File size: 25,518 Bytes
e7678d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>AI Text Detector</title>
    <script src="https://cdn.jsdelivr.net/npm/onnxruntime-web/dist/ort.min.js"></script>
    <script type="module" src="https://cdn.jsdelivr.net/npm/@xenova/transformers@2.17.2/dist/transformers.min.js"></script>
    <style>
        * {
            margin: 0;
            padding: 0;
            box-sizing: border-box;
        }

        body {
            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
            min-height: 100vh;
            display: flex;
            align-items: center;
            justify-content: center;
            padding: 20px;
        }

        .container {
            background: white;
            border-radius: 20px;
            box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1);
            padding: 40px;
            max-width: 800px;
            width: 100%;
            position: relative;
            overflow: hidden;
        }

        .container::before {
            content: '';
            position: absolute;
            top: 0;
            left: 0;
            right: 0;
            height: 5px;
            background: linear-gradient(90deg, #667eea, #764ba2, #f093fb, #f5576c);
        }

        h1 {
            text-align: center;
            color: #333;
            margin-bottom: 10px;
            font-size: 2.5em;
            font-weight: 700;
        }

        .subtitle {
            text-align: center;
            color: #666;
            margin-bottom: 30px;
            font-size: 1.1em;
        }

        .input-section {
            margin-bottom: 30px;
        }

        label {
            display: block;
            margin-bottom: 10px;
            color: #333;
            font-weight: 600;
            font-size: 1.1em;
        }

        textarea {
            width: 100%;
            height: 200px;
            padding: 20px;
            border: 2px solid #e1e5e9;
            border-radius: 15px;
            font-size: 16px;
            line-height: 1.6;
            resize: vertical;
            transition: all 0.3s ease;
            font-family: inherit;
        }

        textarea:focus {
            outline: none;
            border-color: #667eea;
            box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1);
        }

        .button-container {
            text-align: center;
            margin: 30px 0;
        }

        button {
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
            color: white;
            border: none;
            padding: 15px 40px;
            border-radius: 50px;
            font-size: 18px;
            font-weight: 600;
            cursor: pointer;
            transition: all 0.3s ease;
            box-shadow: 0 5px 15px rgba(102, 126, 234, 0.3);
        }

        button:hover {
            transform: translateY(-2px);
            box-shadow: 0 8px 25px rgba(102, 126, 234, 0.4);
        }

        button:active {
            transform: translateY(0);
        }

        button:disabled {
            background: #ccc;
            cursor: not-allowed;
            transform: none;
            box-shadow: none;
        }

        .result {
            margin-top: 30px;
            padding: 25px;
            border-radius: 15px;
            text-align: center;
            transition: all 0.3s ease;
        }

        .result.human {
            background: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%);
            color: white;
        }

        .result.ai {
            background: linear-gradient(135deg, #fa709a 0%, #fee140 100%);
            color: white;
        }

        .result.loading {
            background: linear-gradient(135deg, #ffecd2 0%, #fcb69f 100%);
            color: #333;
        }

        .result.error {
            background: linear-gradient(135deg, #ff9a9e 0%, #fecfef 100%);
            color: #333;
        }

        .prediction {
            font-size: 2em;
            font-weight: 700;
            margin-bottom: 10px;
            text-transform: uppercase;
        }

        .confidence {
            font-size: 1.2em;
            margin-bottom: 10px;
        }

        .probability {
            font-size: 1em;
            opacity: 0.9;
        }

        .stats {
            display: grid;
            grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
            gap: 15px;
            margin-top: 20px;
        }

        .stat {
            text-align: center;
            padding: 15px;
            background: rgba(255, 255, 255, 0.1);
            border-radius: 10px;
            backdrop-filter: blur(10px);
        }

        .stat-value {
            font-size: 1.5em;
            font-weight: 700;
            display: block;
        }

        .stat-label {
            font-size: 0.9em;
            opacity: 0.8;
        }

        .loading-spinner {
            display: inline-block;
            width: 20px;
            height: 20px;
            border: 2px solid #f3f3f3;
            border-top: 2px solid #333;
            border-radius: 50%;
            animation: spin 1s linear infinite;
        }

        @keyframes spin {
            0% { transform: rotate(0deg); }
            100% { transform: rotate(360deg); }
        }

        .model-info {
            background: #f8f9fa;
            padding: 20px;
            border-radius: 15px;
            margin-bottom: 30px;
            border-left: 5px solid #667eea;
        }

        .model-info h3 {
            color: #333;
            margin-bottom: 10px;
        }

        .model-info p {
            color: #666;
            line-height: 1.6;
        }

        .examples {
            margin-top: 30px;
            display: grid;
            grid-template-columns: 1fr 1fr;
            gap: 20px;
        }

        .example {
            background: #f8f9fa;
            padding: 15px;
            border-radius: 10px;
            cursor: pointer;
            transition: all 0.3s ease;
            border: 2px solid transparent;
        }

        .example:hover {
            background: #e9ecef;
            border-color: #667eea;
        }

        .example h4 {
            color: #333;
            margin-bottom: 10px;
            font-size: 1em;
        }

        .example p {
            color: #666;
            font-size: 0.9em;
            line-height: 1.4;
        }

        .status {
            margin-top: 10px;
            padding: 8px 12px;
            border-radius: 8px;
            font-size: 0.9em;
            font-weight: 500;
        }

        .status.loading {
            background: #fff3cd;
            color: #856404;
            border: 1px solid #ffeaa7;
        }

        .status.ready {
            background: #d4edda;
            color: #155724;
            border: 1px solid #c3e6cb;
        }

        .status.processing {
            background: #cce8ff;
            color: #004085;
            border: 1px solid #b3d9ff;
        }

        .status.error {
            background: #f8d7da;
            color: #721c24;
            border: 1px solid #f5c6cb;
        }

        .status.complete {
            background: #d1ecf1;
            color: #0c5460;
            border: 1px solid #bee5eb;
        }

        code {
            background: rgba(0,0,0,0.1);
            padding: 2px 4px;
            border-radius: 3px;
            font-family: monospace;
            font-size: 0.85em;
        }
            .container {
                padding: 20px;
                margin: 10px;
            }

            h1 {
                font-size: 2em;
            }

            .stats {
                grid-template-columns: repeat(2, 1fr);
            }
    </style>
</head>
<body>
    <div class="container">
        <h1>πŸ€– AI Text Detector</h1>
        <p class="subtitle">Powered by Ultra-Optimized Neural Networks</p>
        
        <div class="model-info">
            <h3>πŸ“Š Model Status</h3>
            <div id="status" class="status loading">πŸ”„ Loading model and tokenizer...</div>
        </div>

        <div class="input-section">
            <label for="textInput">πŸ“ Enter text to analyze:</label>
            <textarea 
                id="textInput" 
                placeholder="Paste your text here... (minimum 100 characters required for accurate analysis)"
                spellcheck="false"
            ></textarea>
        </div>
        
        <div class="button-container">
            <button id="analyzeBtn" onclick="analyzeText()">
                <span id="btnText">πŸš€ Analyze Text</span>
                <span id="btnSpinner" class="loading-spinner" style="display: none;"></span>
            </button>
        </div>
        
        <div id="result" class="result" style="display: none;"></div>
    </div>

    <script type="module">
        import { AutoTokenizer } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.17.2/dist/transformers.min.js';
        
        let session = null;
        let tokenizer = null;
        
        // Initialize ONNX Runtime and load model + tokenizer
        async function initializeModel() {
            try {
                console.log('Loading tokenizer and ONNX model...');
                
                // Load the actual tokenizer from HuggingFace Hub
                tokenizer = await AutoTokenizer.from_pretrained('HuggingFaceTB/SmolLM-135M', {
                    progress_callback: (progress) => {
                        if (progress.status === 'downloading') {
                            updateStatus('loading', `πŸ“₯ Downloading tokenizer: ${progress.name}`);
                        }
                    }
                });
                console.log('Tokenizer loaded successfully!');
                updateStatus('loading', 'πŸ€– Loading ONNX model...');
                
                // Load ONNX model - try multiple possible filenames
                const possibleModelNames = [
                    './fixed_optimized_detector.onnx',
                    './ultra_optimized_detector.onnx',
                    './optimized_detector.onnx',
                    './model.onnx'
                ];
                
                let modelLoaded = false;
                for (const modelPath of possibleModelNames) {
                    try {
                        session = await ort.InferenceSession.create(modelPath);
                        console.log(`ONNX model loaded successfully from: ${modelPath}`);
                        modelLoaded = true;
                        break;
                    } catch (error) {
                        // Only log if it's not a 404 error to reduce console spam
                        if (!error.message.includes('failed to load external data file')) {
                            console.log(`Failed to load from ${modelPath}:`, error.message);
                        }
                    }
                }
                
                if (!modelLoaded) {
                    throw new Error('ONNX model file not found. Please ensure your .onnx file is in the same directory as this HTML file.');
                }
                
                console.log('Model inputs:', session.inputNames);
                console.log('Model outputs:', session.outputNames);
                
                // Enable the analyze button
                document.getElementById('analyzeBtn').disabled = false;
                updateStatus('ready', 'βœ… Model loaded and ready!');
                
            } catch (error) {
                console.error('Failed to load model:', error);
                updateStatus('error', `❌ Failed to load: ${error.message}`);
                
                // Show helpful error message based on the type of error
                if (error.message.includes('tokenizer')) {
                    showResult('error', '❌ Failed to load tokenizer. Please check your internet connection.');
                } else if (error.message.includes('ONNX') || error.message.includes('external data')) {
                    showResult('error', `❌ ONNX model file not found. Please place your .onnx model file in the same directory as this HTML file. Expected names: ultra_optimized_detector.onnx, fixed_optimized_detector.onnx, optimized_detector.onnx, or model.onnx`);
                } else {
                    showResult('error', `❌ Failed to initialize: ${error.message}`);
                }
            }
        }

        // Tokenize text using the proper tokenizer
        async function tokenizeText(text, maxLength = 256) {
            try {
                // Use the actual tokenizer with proper settings
                const encoded = await tokenizer(text, {
                    truncation: true,
                    padding: 'max_length',
                    max_length: maxLength,
                    return_tensors: false // We'll handle tensor creation manually
                });
                
                console.log('Encoded result:', encoded);
                
                // Handle different possible return formats
                let inputIds, attentionMask;
                
                if (encoded.input_ids && Array.isArray(encoded.input_ids)) {
                    // Direct array format
                    inputIds = encoded.input_ids;
                    attentionMask = encoded.attention_mask;
                } else if (encoded.input_ids && encoded.input_ids.data) {
                    // Tensor-like format
                    inputIds = Array.from(encoded.input_ids.data);
                    attentionMask = Array.from(encoded.attention_mask.data);
                } else if (Array.isArray(encoded)) {
                    // Sometimes returns just the token IDs
                    inputIds = encoded;
                    attentionMask = encoded.map(token => token === tokenizer.pad_token_id ? 0 : 1);
                } else {
                    throw new Error('Unexpected tokenizer output format');
                }
                
                // Ensure we have the right length
                if (inputIds.length !== maxLength) {
                    console.warn(`Expected length ${maxLength}, got ${inputIds.length}`);
                    // Pad or truncate as needed
                    if (inputIds.length < maxLength) {
                        const padToken = tokenizer.pad_token_id || 0;
                        while (inputIds.length < maxLength) {
                            inputIds.push(padToken);
                            attentionMask.push(0);
                        }
                    } else {
                        inputIds = inputIds.slice(0, maxLength);
                        attentionMask = attentionMask.slice(0, maxLength);
                    }
                }
                
                return {
                    input_ids: inputIds,
                    attention_mask: attentionMask
                };
            } catch (error) {
                console.error('Tokenization error:', error);
                throw new Error(`Failed to tokenize text: ${error.message}`);
            }
        }

        async function analyzeText() {
            const text = document.getElementById('textInput').value.trim();
            
            if (!text) {
                showResult('error', 'Please enter some text to analyze.');
                return;
            }
            
            if (text.length < 100) {
                showResult('error', 'Please enter at least 100 characters for accurate analysis.');
                return;
            }
            
            if (!session || !tokenizer) {
                showResult('error', 'Model or tokenizer not loaded yet. Please wait...');
                return;
            }
            
            // Show loading state
            setLoading(true);
            showResult('loading', 'Tokenizing and analyzing text...');
            
            try {
                // Tokenize the text using the proper tokenizer
                console.log('Tokenizing text...');
                const tokenized = await tokenizeText(text, 256);
                
                console.log('Input IDs length:', tokenized.input_ids.length);
                console.log('Attention mask length:', tokenized.attention_mask.length);
                console.log('Sample tokens:', tokenized.input_ids.slice(0, 10));
                console.log('Sample attention:', tokenized.attention_mask.slice(0, 10));
                
                // Validate tokenization
                if (!tokenized.input_ids || !Array.isArray(tokenized.input_ids)) {
                    throw new Error('Invalid tokenization: input_ids is not an array');
                }
                
                if (!tokenized.attention_mask || !Array.isArray(tokenized.attention_mask)) {
                    throw new Error('Invalid tokenization: attention_mask is not an array');
                }
                
                if (tokenized.input_ids.length !== 256 || tokenized.attention_mask.length !== 256) {
                    throw new Error(`Invalid tokenization: expected length 256, got input_ids: ${tokenized.input_ids.length}, attention_mask: ${tokenized.attention_mask.length}`);
                }
                
                // Convert to the correct format for ONNX
                const inputIds = new BigInt64Array(tokenized.input_ids.map(id => BigInt(id)));
                const attentionMask = new BigInt64Array(tokenized.attention_mask.map(mask => BigInt(mask)));
                
                // Create ONNX tensors with correct shapes
                const feeds = {
                    'input_ids': new ort.Tensor('int64', inputIds, [1, 256]),
                    'attention_mask': new ort.Tensor('int64', attentionMask, [1, 256])
                };
                
                console.log('Running inference...');
                updateStatus('processing', '🧠 Running neural network inference...');
                
                // Run inference
                const startTime = performance.now();
                const results = await session.run(feeds);
                const inferenceTime = performance.now() - startTime;
                
                console.log('Inference completed in', inferenceTime.toFixed(2), 'ms');
                console.log('Raw output:', results.probability_human.data[0]);
                
                const probability = results.probability_human.data[0];
                
                // Interpret results - flip the logic since it seems backwards
                const isHuman = probability < 0.5;  // Changed from > to <
                const confidence = Math.abs(probability - 0.5) * 2;
                
                // Display the corrected probability (1 - probability for human score)
                const humanProbability = 1 - probability;
                
                updateStatus('complete', `βœ… Analysis complete (${inferenceTime.toFixed(0)}ms)`);
                displayResults(humanProbability, isHuman, confidence, text.length, inferenceTime);
                
            } catch (error) {
                console.error('Analysis error:', error);
                updateStatus('error', `❌ Analysis failed: ${error.message}`);
                showResult('error', `Error analyzing text: ${error.message}`);
            } finally {
                setLoading(false);
            }
        }

        function displayResults(probability, isHuman, confidence, textLength, inferenceTime) {
            const resultDiv = document.getElementById('result');
            const className = isHuman ? 'human' : 'ai';
            const prediction = isHuman ? 'Human Written' : 'AI Generated';
            const icon = isHuman ? 'πŸ‘€' : 'πŸ€–';
            
            // Calculate token count (approximate)
            const estimatedTokens = Math.ceil(textLength / 4); // Rough estimate
            
            resultDiv.className = `result ${className}`;
            resultDiv.style.display = 'block';
            
            resultDiv.innerHTML = `
                <div class="prediction">${icon} ${prediction}</div>
                <div class="confidence">Confidence: ${(confidence * 100).toFixed(1)}%</div>
                <div class="probability">Human Probability: ${(probability * 100).toFixed(1)}%</div>
                
                <div class="stats">
                    <div class="stat">
                        <span class="stat-value">${textLength}</span>
                        <span class="stat-label">Characters</span>
                    </div>
                    <div class="stat">
                        <span class="stat-value">${estimatedTokens}</span>
                        <span class="stat-label">Est. Tokens</span>
                    </div>
                    <div class="stat">
                        <span class="stat-value">${inferenceTime.toFixed(0)}ms</span>
                        <span class="stat-label">Inference Time</span>
                    </div>
                    <div class="stat">
                        <span class="stat-value">${(probability * 100).toFixed(0)}%</span>
                        <span class="stat-label">Human Score</span>
                    </div>
                </div>
                
                <div style="margin-top: 15px; padding: 15px; background: rgba(255,255,255,0.1); border-radius: 10px; font-size: 0.9em;">
                    <strong>Performance:</strong> ${inferenceTime.toFixed(0)}ms inference time
                </div>
            `;
            
            // Scroll to results
            resultDiv.scrollIntoView({ behavior: 'smooth', block: 'nearest' });
        }

        function showResult(type, message) {
            const resultDiv = document.getElementById('result');
            resultDiv.className = `result ${type}`;
            resultDiv.style.display = 'block';
            
            if (type === 'loading') {
                resultDiv.innerHTML = `
                    <div style="display: flex; align-items: center; justify-content: center; gap: 10px;">
                        <div class="loading-spinner"></div>
                        ${message}
                    </div>
                `;
            } else {
                resultDiv.innerHTML = `<div>${message}</div>`;
            }
        }

        function setLoading(isLoading) {
            const btn = document.getElementById('analyzeBtn');
            const btnText = document.getElementById('btnText');
            const btnSpinner = document.getElementById('btnSpinner');
            
            btn.disabled = isLoading;
            btnText.style.display = isLoading ? 'none' : 'inline';
            btnSpinner.style.display = isLoading ? 'inline-block' : 'none';
        }

        function updateStatus(type, message) {
            const statusDiv = document.getElementById('status');
            if (statusDiv) {
                statusDiv.textContent = message;
                statusDiv.className = `status ${type}`;
            }
        }

        function loadExample(type) {
            const textarea = document.getElementById('textInput');
            
            if (type === 'human') {
                textarea.value = "I've been thinking a lot about creativity lately, especially after visiting the local art museum last weekend. There's something deeply moving about standing in front of a painting that someone poured their heart into decades or even centuries ago. The way light hits the canvas, the subtle imperfections in the brushstrokes, the stories hidden in every corner of the composition. It makes me wonder about the artist's life, their struggles, their moments of doubt and breakthrough. Art has this incredible power to transcend time and connect us with people we'll never meet, yet somehow understand on a profound level.";
            } else {
                textarea.value = "Here are the key steps to improve your writing skills: 1) Read extensively across different genres and styles to expand your vocabulary and understanding of various writing techniques. 2) Practice writing regularly, setting aside dedicated time each day for writing exercises or projects. 3) Seek feedback from peers, mentors, or writing groups to identify areas for improvement. 4) Study grammar and style guides to ensure technical accuracy. 5) Revise and edit your work multiple times, focusing on clarity, coherence, and flow. 6) Experiment with different writing formats and styles to find your unique voice. Following these steps consistently will help you develop stronger writing abilities over time.";
            }
            
            // Auto-focus the textarea
            textarea.focus();
        }

        // Handle Enter key in textarea (Shift+Enter for new line, Enter to analyze)
        document.getElementById('textInput').addEventListener('keydown', function(e) {
            if (e.key === 'Enter' && !e.shiftKey) {
                e.preventDefault();
                analyzeText();
            }
        });

        // Make functions globally available
        window.analyzeText = analyzeText;

        // Initialize the model when page loads
        window.addEventListener('load', initializeModel);
    </script>
</body>
</html>