File size: 5,881 Bytes
ce266dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from dataclasses import dataclass

# Define the LayerNorm class
class LayerNorm(nn.Module):
    def __init__(self, ndim, bias):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(ndim))
        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
    def forward(self, x):
        return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5)

# Define the CausalSelfAttention class
class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.flash = hasattr(F, 'scaled_dot_product_attention')
        if not self.flash:
            self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
                                       .view(1, 1, config.block_size, config.block_size))

    def forward(self, x):
        B, T, C = x.size()
        q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)

        if self.flash:
            y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.attn_dropout.p if self.training else 0.0, is_causal=True)
        else:
            att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
            att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
            att = F.softmax(att, dim=-1)
            att = self.attn_dropout(att)
            y = att @ v

        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.resid_dropout(self.c_proj(y))
        return y

# Define the MLP class
class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
        self.gelu = nn.GELU()
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)
    def forward(self, x):
        return self.dropout(self.c_proj(self.gelu(self.c_fc(x))))

# Define the Block class
class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln1 = LayerNorm(config.n_embd, config.bias)
        self.attn = CausalSelfAttention(config)
        self.ln2 = LayerNorm(config.n_embd, config.bias)
        self.mlp = MLP(config)
    def forward(self, x):
        x = x + self.attn(self.ln1(x))
        x = x + self.mlp(self.ln2(x))
        return x

# Define the GPTConfig dataclass
@dataclass
class GPTConfig:
    block_size: int
    vocab_size: int
    n_layer: int
    n_head: int
    n_embd: int
    dropout: float = 0.0
    bias: bool = True

# Define the GPT model class
class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.transformer = nn.ModuleDict(dict(
            wte=nn.Embedding(config.vocab_size, config.n_embd),
            wpe=nn.Embedding(config.block_size, config.n_embd),
            drop=nn.Dropout(config.dropout),
            h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f=LayerNorm(config.n_embd, config.bias),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.transformer.wte.weight = self.lm_head.weight  # weight tying

        self.apply(self._init_weights)
        for pn, p in self.named_parameters():
            if pn.endswith('c_proj.weight'):
                nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer))

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets=None):
        device = idx.device
        b, t = idx.size()
        assert t <= self.config.block_size
        pos = torch.arange(0, t, dtype=torch.long, device=device)

        tok_emb = self.transformer.wte(idx)
        pos_emb = self.transformer.wpe(pos)
        x = self.transformer.drop(tok_emb + pos_emb)
        for block in self.transformer.h:
            x = block(x)
        x = self.transformer.ln_f(x)

        if targets is not None:
            logits = self.lm_head(x)
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
            return logits, loss
        else:
            logits = self.lm_head(x[:, [-1], :])
            return logits, None

    @torch.no_grad()
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
        for _ in range(max_new_tokens):
            idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
            logits, _ = self(idx_cond)
            logits = logits[:, -1, :] / temperature
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            probs = F.softmax(logits, dim=-1)
            idx_next = torch.multinomial(probs, num_samples=1)
            idx = torch.cat((idx, idx_next), dim=1)
        return idx