# <저장된_모델_경로>/configuration_kormo_moe.py from transformers import PretrainedConfig from transformers.modeling_rope_utils import rope_config_validation class KORMoMoeConfig(PretrainedConfig): model_type = "kormo_moe" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=112576, hidden_size=6144, intermediate_size=21504, num_hidden_layers=48, num_attention_heads=40, num_key_value_heads=8, hidden_act="silu", max_position_embeddings=131072, initializer_range=0.02, rms_norm_eps=1e-05, use_cache=True, pad_token_id=None, bos_token_id=0, eos_token_id=1, pretraining_tp=1, tie_word_embeddings=False, rope_theta=500000.0, attention_bias=False, attention_dropout=0.0, rope_scaling=None, mlp_bias=False, head_dim=128, # MoE specific num_experts=2, num_experts_per_tok=2, moe_intermediate_size=None, shared_expert_intermediate_size=None, norm_topk_prob=True, decoder_sparse_step=1, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.mlp_bias = mlp_bias self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads self.mask_type = None # MoE specific self.num_experts = num_experts self.num_experts_per_tok = num_experts_per_tok self.moe_intermediate_size = moe_intermediate_size if moe_intermediate_size is not None else intermediate_size self.shared_expert_intermediate_size = shared_expert_intermediate_size self.norm_topk_prob = norm_topk_prob self.decoder_sparse_step = decoder_sparse_step if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )