--- license: mit metrics: - bleu - rouge - meteor - bertscore base_model: - liuhaotian/llava-v1.5-7b pipeline_tag: visual-question-answering --- # visual-qa-tem Model Card ## Model details **base_model** We finetune our custom data on LLava-v1.5-7b See on :[liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) **Paper or resources for more information:** Our source code publish on : https://github.com/SmartLab-Roy/visual-qa-tem.git ### Download Model ```python from huggingface_hub import snapshot_download import os # Download the model to local directory model_path = snapshot_download( repo_id="LabSmart/visual-qa-tem", cache_dir="./models", # Local cache directory resume_download=True ) print(f"Model downloaded to: {model_path}") ``` ### Quick Start Reference [LLaVA](https://github.com/haotian-liu/LLaVA.git) for environment setup and CLI inference: ``` python -m llava.serve.cli \ --model-path "model_path from the download output"\ --image-file "path/to/your/tem_image.jpg" \ --load-4bit ```