--- license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_keras_callback model-index: - name: Labira/LabiraEdu-v1.0x results: [] --- # Labira/LabiraEdu-v1.0x This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0512 - Validation Loss: 4.1014 - Epoch: 34 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1100, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 5.0565 | 3.9761 | 0 | | 3.6621 | 3.2932 | 1 | | 3.0961 | 3.2587 | 2 | | 2.7357 | 3.2031 | 3 | | 2.3059 | 3.2519 | 4 | | 1.8933 | 3.4772 | 5 | | 1.9076 | 3.1664 | 6 | | 1.5492 | 3.4201 | 7 | | 1.2578 | 3.5190 | 8 | | 1.0478 | 3.4076 | 9 | | 1.0130 | 3.5961 | 10 | | 0.9073 | 3.4919 | 11 | | 0.7071 | 3.5013 | 12 | | 0.5616 | 4.0259 | 13 | | 0.4798 | 3.9766 | 14 | | 0.5938 | 3.8146 | 15 | | 0.6476 | 3.7065 | 16 | | 0.4264 | 4.1631 | 17 | | 0.5290 | 3.7455 | 18 | | 0.4637 | 3.6362 | 19 | | 0.3826 | 3.8389 | 20 | | 0.2876 | 3.7611 | 21 | | 0.2221 | 4.0540 | 22 | | 0.1752 | 4.0683 | 23 | | 0.1544 | 4.0452 | 24 | | 0.1600 | 4.0417 | 25 | | 0.1390 | 4.0668 | 26 | | 0.1134 | 4.0659 | 27 | | 0.0965 | 4.0700 | 28 | | 0.0820 | 4.2026 | 29 | | 0.0810 | 4.3008 | 30 | | 0.1166 | 4.0835 | 31 | | 0.0776 | 4.0886 | 32 | | 0.1033 | 4.1303 | 33 | | 0.0512 | 4.1014 | 34 | ### Framework versions - Transformers 4.41.2 - TensorFlow 2.15.0 - Datasets 2.19.2 - Tokenizers 0.19.1