File size: 3,614 Bytes
8466625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4857421
 
 
8466625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7611cfa
 
 
 
 
 
 
 
 
 
 
 
20321af
 
 
 
 
 
 
 
 
 
 
9ab7061
 
 
 
 
 
 
 
 
 
 
4857421
 
 
 
 
 
 
 
 
 
 
8466625
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
library_name: transformers
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: Labira/LabiraPJOK_1_50
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Labira/LabiraPJOK_1_50

This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1065
- Validation Loss: 7.1445
- Epoch: 45

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 150, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.6494     | 4.1520          | 0     |
| 1.6128     | 4.3365          | 1     |
| 1.2043     | 4.6166          | 2     |
| 1.1480     | 4.5769          | 3     |
| 1.0336     | 5.1587          | 4     |
| 0.8954     | 5.2969          | 5     |
| 0.7306     | 5.4294          | 6     |
| 0.7589     | 5.2671          | 7     |
| 0.5728     | 5.2392          | 8     |
| 0.6026     | 5.6260          | 9     |
| 0.3001     | 6.3308          | 10    |
| 0.3688     | 6.4235          | 11    |
| 0.2650     | 5.8635          | 12    |
| 0.3598     | 5.5841          | 13    |
| 0.2204     | 5.8293          | 14    |
| 0.2078     | 6.1692          | 15    |
| 0.1080     | 6.4491          | 16    |
| 0.1985     | 6.4271          | 17    |
| 0.0852     | 6.2699          | 18    |
| 0.1295     | 6.3012          | 19    |
| 0.0857     | 6.6709          | 20    |
| 0.0957     | 7.0530          | 21    |
| 0.0843     | 7.2611          | 22    |
| 0.2785     | 7.1146          | 23    |
| 0.0894     | 6.9268          | 24    |
| 0.1080     | 7.1326          | 25    |
| 0.0535     | 7.5213          | 26    |
| 0.3044     | 7.5237          | 27    |
| 0.1145     | 7.3478          | 28    |
| 0.0558     | 7.2094          | 29    |
| 0.1047     | 7.0415          | 30    |
| 0.0498     | 7.0443          | 31    |
| 0.1680     | 7.0692          | 32    |
| 0.1997     | 7.1370          | 33    |
| 0.0362     | 7.1806          | 34    |
| 0.0332     | 7.2268          | 35    |
| 0.0596     | 7.2691          | 36    |
| 0.0537     | 7.2544          | 37    |
| 0.0422     | 7.1536          | 38    |
| 0.0460     | 7.1102          | 39    |
| 0.0542     | 7.0963          | 40    |
| 0.0390     | 7.1052          | 41    |
| 0.2518     | 7.1087          | 42    |
| 0.1056     | 7.1267          | 43    |
| 0.0403     | 7.1337          | 44    |
| 0.1065     | 7.1445          | 45    |


### Framework versions

- Transformers 4.44.2
- TensorFlow 2.17.0
- Datasets 3.0.1
- Tokenizers 0.19.1