File size: 3,779 Bytes
b4ee11d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae3698f
 
 
b4ee11d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdc061f
0a2f83e
b2daf8e
c7e6b70
4ce36d3
0e59440
2239608
9c5fc19
93a1f99
182134a
628a635
4f4f95f
9a0f8e2
1647c92
5870607
bfe3645
6bbfad6
1597b3f
094944c
8864ded
dea24aa
b08f014
8d61f1f
f076cea
22ca491
d8501b8
a3b2369
d966129
e147867
0724515
2249598
fbf692e
b9aedbf
751c5f7
2044d5e
44931d5
5f88701
b2a0f48
6da7bd7
c709606
bff6fea
e0ca0af
f29ddc7
e2b5094
4027c49
1ea4c64
a3d2e9e
16cabec
ae3698f
b4ee11d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
library_name: transformers
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: Labira/LabiraPJOK_2_50
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Labira/LabiraPJOK_2_50

This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0612
- Validation Loss: 5.0368
- Epoch: 49

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 250, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 5.8505     | 5.6669          | 0     |
| 5.2925     | 5.1030          | 1     |
| 4.5442     | 4.7484          | 2     |
| 4.0958     | 4.7040          | 3     |
| 3.7810     | 4.5713          | 4     |
| 3.5676     | 4.4824          | 5     |
| 3.1885     | 4.3205          | 6     |
| 2.7673     | 4.2241          | 7     |
| 2.5267     | 4.2636          | 8     |
| 2.1790     | 4.3948          | 9     |
| 1.8900     | 4.4249          | 10    |
| 1.6497     | 4.3953          | 11    |
| 1.4075     | 4.6399          | 12    |
| 1.1854     | 4.7024          | 13    |
| 0.9754     | 4.9350          | 14    |
| 0.9994     | 5.3112          | 15    |
| 0.7262     | 5.0277          | 16    |
| 0.5385     | 5.6396          | 17    |
| 0.5031     | 5.0280          | 18    |
| 0.4707     | 5.4408          | 19    |
| 0.3623     | 5.2230          | 20    |
| 0.3844     | 5.0132          | 21    |
| 0.3438     | 5.1672          | 22    |
| 0.2012     | 5.2035          | 23    |
| 0.2089     | 5.1718          | 24    |
| 0.1978     | 5.0590          | 25    |
| 0.2140     | 5.1029          | 26    |
| 0.1903     | 4.9778          | 27    |
| 0.1750     | 4.9790          | 28    |
| 0.1228     | 5.0673          | 29    |
| 0.0892     | 5.0525          | 30    |
| 0.1576     | 4.9680          | 31    |
| 0.1337     | 4.9172          | 32    |
| 0.0976     | 4.8575          | 33    |
| 0.0649     | 4.7732          | 34    |
| 0.1050     | 4.8566          | 35    |
| 0.0885     | 5.0122          | 36    |
| 0.0725     | 5.0716          | 37    |
| 0.1004     | 5.0808          | 38    |
| 0.0443     | 5.0632          | 39    |
| 0.0514     | 5.0632          | 40    |
| 0.0632     | 5.0526          | 41    |
| 0.1997     | 5.0193          | 42    |
| 0.0600     | 5.0489          | 43    |
| 0.0482     | 5.0666          | 44    |
| 0.0862     | 5.0719          | 45    |
| 0.1512     | 5.0631          | 46    |
| 0.0815     | 5.0498          | 47    |
| 0.0462     | 5.0410          | 48    |
| 0.0612     | 5.0368          | 49    |


### Framework versions

- Transformers 4.44.2
- TensorFlow 2.17.0
- Datasets 3.0.1
- Tokenizers 0.19.1