--- language: tr license: mit tags: - turkish - türkiye - english - ai - lamapi - gemma3 - next - next-x1 - efficient - text-generation - open-source - 1b - 270m - finetune - gguf - huggingface - large-language-model - llm - causal - transformer - artificial-intelligence - machine-learning - ai-research - natural-language-processing - nlp - finetuned - lightweight - creative - summarization - question-answering - chat-model - generative-ai - optimized-model - unsloth - trl - sft - chemistry - biology - finance - legal - music - art - code - climate - medical - agent - text-generation-inference - llama-cpp - gguf-my-repo pipeline_tag: text-generation datasets: - mlabonne/FineTome-100k - ITCL/FineTomeOs - Gryphe/ChatGPT-4o-Writing-Prompts - dongguanting/ARPO-SFT-54K - GreenerPastures/All-Your-Base-Full - Gryphe/Opus-WritingPrompts - HuggingFaceH4/MATH-500 - mlabonne/smoltalk-flat - mlabonne/natural_reasoning-formatted - OpenSPG/KAG-Thinker-training-dataset - uclanlp/Brief-Pro - CognitiveKernel/CognitiveKernel-Pro-SFT - SuperbEmphasis/Claude-4.0-DeepSeek-R1-RP-SFWish - QuixiAI/dolphin-r1 - mlabonne/lmsys-arena-human-sft-55k library_name: transformers base_model: Lamapi/next-270m --- # Lamapi/next-270m-Q4_K_M-GGUF This model was converted to GGUF format from [`Lamapi/next-270m`](https://huggingface.co/Lamapi/next-270m) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Lamapi/next-270m) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Lamapi/next-270m-Q4_K_M-GGUF --hf-file next-270m-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Lamapi/next-270m-Q4_K_M-GGUF --hf-file next-270m-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Lamapi/next-270m-Q4_K_M-GGUF --hf-file next-270m-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Lamapi/next-270m-Q4_K_M-GGUF --hf-file next-270m-q4_k_m.gguf -c 2048 ```