Leebeegames commited on
Commit
070df58
·
1 Parent(s): 36e047d

PPO Lunar Lander v2

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: openrail
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.23 +/- 24.53
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd260546af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd260546b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd260546c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd260546ca0>", "_build": "<function ActorCriticPolicy._build at 0x7fd260546d30>", "forward": "<function ActorCriticPolicy.forward at 0x7fd260546dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd260546e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd260546ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd260546f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd26054a040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd26054a0d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd26054a160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd262e664c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678897738292000445, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq2rryukbW6InwZutEfrbabVCo6IsQvOQAAgD8AAIA/Wt+fPa41q7qP2RM7vIdcNWOliLrlZym6AACAPwAAgD/AJpc9L282PSK3gb38yz6+kFysvasrtDwAAAAAAAAAAGYea7zh4J26yLabOJG9lzOt2Zq6h7SztwAAgD8AAIA/mmzLPEgbnLoF7QW44qTtslR4wLoWlBo3AACAPwAAgD9m59G8jwY6uj465brRwRS2jGeJOUnXBzoAAIA/AACAP6bl6D1cSxi6xoKlOkQVUTdjAE67alq0uQAAgD8AAIA/BhRCvvePTz/cLyk9U/PCvnEw5b0MfAA7AAAAAAAAAABzrMA9opBxPuUs4b39Bom++zlHPe2o6TsAAAAAAAAAAM1viTyF87250caDORwAGzWOLUQ7dkubuAAAgD8AAIA/M5OsOimEQbqiP9u64OpGtmPzITvZVwA6AACAPwAAgD/TGjQ+QaqkvK4yrzwb/EO7xGAPvhq0GrwAAIA/AACAP82PRb0UjLG6vx8st4CHHLKYxEM6utxENgAAgD8AAIA/s34WPQ8cILysBsE7N+sVPS83g72gcvE9AACAPwAAgD/NlKq9KXhrugVyJ7pPtB61ddlDO69xRDkAAIA/AACAP2ZSyjyPhji68pW6u/JXHjhCGi46wOIatwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgNWRIx2ZY0CUhpRSlIwBbJRN6AOMAXSUR0Cb/nsV+I/JdX2UKGgGaAloD0MIe4UF9wM9YECUhpRSlGgVTegDaBZHQJwYA1ejVQR1fZQoaAZoCWgPQwibkNYY9MZoQJSGlFKUaBVN6ANoFkdAnBgFUZNwi3V9lChoBmgJaA9DCFhxqrWwKGVAlIaUUpRoFU3oA2gWR0CcHhyBTXJ6dX2UKGgGaAloD0MI9zsUBfo3YECUhpRSlGgVTegDaBZHQJwicHs1KoR1fZQoaAZoCWgPQwhT6/1Gu/JkQJSGlFKUaBVN6ANoFkdAnCLEngHeJ3V9lChoBmgJaA9DCGUXDK653mRAlIaUUpRoFU3oA2gWR0CcJPV8Ti84dX2UKGgGaAloD0MIBcJOsepYZUCUhpRSlGgVTegDaBZHQJwm2ZNO/L11fZQoaAZoCWgPQwhn1lJAWmFuQJSGlFKUaBVNyAJoFkdAnCf1PWQOnXV9lChoBmgJaA9DCL048dUOoGZAlIaUUpRoFU3oA2gWR0CcP6IrvsqsdX2UKGgGaAloD0MIByeiX1sOZ0CUhpRSlGgVTegDaBZHQJxB4qVhTfl1fZQoaAZoCWgPQwhDxw4q8Y9mQJSGlFKUaBVN6ANoFkdAnEK8rmQr+nV9lChoBmgJaA9DCLix2ZFq8mRAlIaUUpRoFU3oA2gWR0CcRGPaL4vfdX2UKGgGaAloD0MI8ExoktgwYECUhpRSlGgVTegDaBZHQJxE18/lhgF1fZQoaAZoCWgPQwhVNNb+zopjQJSGlFKUaBVN6ANoFkdAnEZHZPEbYXV9lChoBmgJaA9DCC+ISE07AGNAlIaUUpRoFU3oA2gWR0CcSo1q33HrdX2UKGgGaAloD0MIrOC3IUamcUCUhpRSlGgVTQ0BaBZHQJxLUQUYbbV1fZQoaAZoCWgPQwicpPlj2klkQJSGlFKUaBVN6ANoFkdAnE7vfoA4oHV9lChoBmgJaA9DCDtu+N10umNAlIaUUpRoFU3oA2gWR0CcYKkfLcKxdX2UKGgGaAloD0MIeR7cnTXKYUCUhpRSlGgVTegDaBZHQJxgqlzltCR1fZQoaAZoCWgPQwi366UpgktwQJSGlFKUaBVNewNoFkdAnGWLhisnzHV9lChoBmgJaA9DCHJRLSKKFWRAlIaUUpRoFU3oA2gWR0CcZpcxTKkmdX2UKGgGaAloD0MIMpBnl+8MZkCUhpRSlGgVTegDaBZHQJxqfuPV/c51fZQoaAZoCWgPQwiAETRmEhloQJSGlFKUaBVN6ANoFkdAnGzKU/wAl3V9lChoBmgJaA9DCLpNuFdmZWhAlIaUUpRoFU3oA2gWR0CcbpZm7J4jdX2UKGgGaAloD0MISino9pIMY0CUhpRSlGgVTegDaBZHQJyK4eNkvsZ1fZQoaAZoCWgPQwjXaDnQwyRlQJSGlFKUaBVN6ANoFkdAnIyMoc7yQXV9lChoBmgJaA9DCMCUgQPapmZAlIaUUpRoFU3oA2gWR0CcjTdV/+bWdX2UKGgGaAloD0MISKMCJ1voZECUhpRSlGgVTegDaBZHQJyOoqOLiuN1fZQoaAZoCWgPQwjg88MIYTpgQJSGlFKUaBVN6ANoFkdAnI8FxXGOuXV9lChoBmgJaA9DCA5LAz8q02ZAlIaUUpRoFU3oA2gWR0CckDzlcQiBdX2UKGgGaAloD0MIUWwFTUtaZUCUhpRSlGgVTegDaBZHQJyTxdC3PRl1fZQoaAZoCWgPQwgq4Qm9/nlhQJSGlFKUaBVN6ANoFkdAnJSF8XvYvnV9lChoBmgJaA9DCG7Ek93ME2NAlIaUUpRoFU3oA2gWR0CcmINYr8R+dX2UKGgGaAloD0MI2Xkbmx2rZUCUhpRSlGgVTegDaBZHQJyrLjbSJCV1fZQoaAZoCWgPQwiARX79EO1nQJSGlFKUaBVN6ANoFkdAnKswCr92o3V9lChoBmgJaA9DCPlNYaUCH3NAlIaUUpRoFU1NAmgWR0Ccr0SP2f03dX2UKGgGaAloD0MI0zO9xNhZY0CUhpRSlGgVTegDaBZHQJyw+o/A0sR1fZQoaAZoCWgPQwjB4QURKVNkQJSGlFKUaBVN6ANoFkdAnLJhSYPXkHV9lChoBmgJaA9DCILmc+72BGBAlIaUUpRoFU3oA2gWR0Cct8QiRnvldX2UKGgGaAloD0MI+BbWjXfDY0CUhpRSlGgVTegDaBZHQJy66dat9x91fZQoaAZoCWgPQwhgysABrVJgQJSGlFKUaBVN6ANoFkdAnL2O3x4IKXV9lChoBmgJaA9DCHGNz2T/fmRAlIaUUpRoFU3oA2gWR0CcwfuGbkOqdX2UKGgGaAloD0MID+85sBzPYkCUhpRSlGgVTegDaBZHQJzWpxYJVsF1fZQoaAZoCWgPQwgn+RG/4plmQJSGlFKUaBVN6ANoFkdAnNdWxQizLXV9lChoBmgJaA9DCLDllettKVdAlIaUUpRoFU3oA2gWR0Cc2Jl7dBSldX2UKGgGaAloD0MIRFILJZM5Z0CUhpRSlGgVTegDaBZHQJzY/IvJzT51fZQoaAZoCWgPQwgaFqOuNbFnQJSGlFKUaBVN6ANoFkdAnN3IWHk92XV9lChoBmgJaA9DCOqXiLfOz2RAlIaUUpRoFU3oA2gWR0Cc3qGD+R5kdX2UKGgGaAloD0MIRG0bRkErZkCUhpRSlGgVTegDaBZHQJzjJ42S+xp1fZQoaAZoCWgPQwgb2ZWWkepuQJSGlFKUaBVNHgNoFkdAnPRHn+yZ8nV9lChoBmgJaA9DCLb4FADjxmNAlIaUUpRoFU3oA2gWR0Cc+/JDmbLEdX2UKGgGaAloD0MI8x/Sb98xZ0CUhpRSlGgVTegDaBZHQJz79Ok+HJt1fZQoaAZoCWgPQwjXiGAcXKtlQJSGlFKUaBVN6ANoFkdAnP8d96Tnq3V9lChoBmgJaA9DCHL5D+k3OmZAlIaUUpRoFU3oA2gWR0CdAU73fyf+dX2UKGgGaAloD0MIsqGb/YHXXUCUhpRSlGgVTegDaBZHQJ0E//EOy3V1fZQoaAZoCWgPQwgAWB050gpiQJSGlFKUaBVN6ANoFkdAnQb6YNRWLnV9lChoBmgJaA9DCGy1h73QZGRAlIaUUpRoFU3oA2gWR0CdCJBGhEjPdX2UKGgGaAloD0MI1xcJbbnwaECUhpRSlGgVTegDaBZHQJ0MoqDsdDJ1fZQoaAZoCWgPQwi+F1+0R+5kQJSGlFKUaBVN6ANoFkdAnQ4k2UB4lnV9lChoBmgJaA9DCESoUrMHgWhAlIaUUpRoFU3oA2gWR0CdJkL8JlasdX2UKGgGaAloD0MIvJNPj21uZECUhpRSlGgVTegDaBZHQJ0n+y2QXAN1fZQoaAZoCWgPQwgicCTQYIFmQJSGlFKUaBVN6ANoFkdAnSh5KraM73V9lChoBmgJaA9DCNGTMqkhY2FAlIaUUpRoFU3oA2gWR0CdL2WYWtU5dX2UKGgGaAloD0MIsn+eBozsZUCUhpRSlGgVTegDaBZHQJ0wg0sOG0x1fZQoaAZoCWgPQwg+IxEaQehiQJSGlFKUaBVN6ANoFkdAnTVD7MxGlXV9lChoBmgJaA9DCID0TZrGXXJAlIaUUpRoFU1AAmgWR0CdOppblijMdX2UKGgGaAloD0MIwTbiyW58ZUCUhpRSlGgVTegDaBZHQJ1A1Jrcj7h1fZQoaAZoCWgPQwhxAWiULk1vQJSGlFKUaBVNdAJoFkdAnUHEPlMh5nV9lChoBmgJaA9DCL03hgCgUHJAlIaUUpRoFU3iA2gWR0CdRkgH/tIDdX2UKGgGaAloD0MIADrMl5ctZkCUhpRSlGgVTegDaBZHQJ1GmRdQfp51fZQoaAZoCWgPQwgKSPsf4EpnQJSGlFKUaBVN6ANoFkdAnUnWqgh8pnV9lChoBmgJaA9DCK+UZYhjiXBAlIaUUpRoFU2gAmgWR0CdSkHRkVesdX2UKGgGaAloD0MIl8lwPJ9GZECUhpRSlGgVTegDaBZHQJ1MEIF/x2B1fZQoaAZoCWgPQwhIwVPIlVxhQJSGlFKUaBVN6ANoFkdAnVJ6Lfk3j3V9lChoBmgJaA9DCOrPfqQIHGFAlIaUUpRoFU3oA2gWR0CdWNeKbaysdX2UKGgGaAloD0MImYI1ziYWcUCUhpRSlGgVTZwDaBZHQJ1ZL3Gn4wh1fZQoaAZoCWgPQwifPZepiQJyQJSGlFKUaBVN6QJoFkdAnVqa4QSSNnV9lChoBmgJaA9DCIavr3UpBGRAlIaUUpRoFU3oA2gWR0CdWx9nbqQjdX2UKGgGaAloD0MI9GqA0pC+ckCUhpRSlGgVTWEBaBZHQJ1bUAS39aV1fZQoaAZoCWgPQwgDtK1mHYJhQJSGlFKUaBVN6ANoFkdAnXaEEX+ERXV9lChoBmgJaA9DCNL/ci0aaHNAlIaUUpRoFU12AmgWR0CdeYxcE/0NdX2UKGgGaAloD0MIZY16iEZzZkCUhpRSlGgVTegDaBZHQJ16/ssxwhp1fZQoaAZoCWgPQwiOjxZnjP1mQJSGlFKUaBVN6ANoFkdAnXuqW9lEqnV9lChoBmgJaA9DCOC6Ykb4k25AlIaUUpRoFU3+AWgWR0CdfCYm9g4PdX2UKGgGaAloD0MI7PtwkJCqZkCUhpRSlGgVTegDaBZHQJ2D4cKgIyF1fZQoaAZoCWgPQwgIPDCAcOtyQJSGlFKUaBVNTQFoFkdAnYQhi1Aqu3V9lChoBmgJaA9DCCL8i6CxNG5AlIaUUpRoFU2gAWgWR0CdhMAcDKYBdX2UKGgGaAloD0MIyXGndHDucUCUhpRSlGgVTdEBaBZHQJ2GVUOuq3p1fZQoaAZoCWgPQwj/IJIhh2lxQJSGlFKUaBVNogNoFkdAnYZ611GLDXV9lChoBmgJaA9DCNdrelDQhXBAlIaUUpRoFU06AWgWR0CdiLKWLP2PdX2UKGgGaAloD0MIWMnH7oKiZkCUhpRSlGgVTegDaBZHQJ2MR9NN8E51fZQoaAZoCWgPQwietHBZhdtlQJSGlFKUaBVN6ANoFkdAnYyDY7JXAHV9lChoBmgJaA9DCJATJoymJ3JAlIaUUpRoFU2uAmgWR0Cdj/H9m6GydX2UKGgGaAloD0MICAWlaOVOc0CUhpRSlGgVTawCaBZHQJ2QVH6Mzdl1fZQoaAZoCWgPQwiI1oo2x1NyQJSGlFKUaBVN4QNoFkdAnZCIm9g4O3V9lChoBmgJaA9DCJSERNpG/WxAlIaUUpRoFU24AWgWR0CdlPENOM2ndX2UKGgGaAloD0MIN1SM87cvYkCUhpRSlGgVTegDaBZHQJ2WOXWvr4Z1fZQoaAZoCWgPQwh9JCU9DHJyQJSGlFKUaBVNgQNoFkdAnZqtTcZccHV9lChoBmgJaA9DCJlKP+EsF3FAlIaUUpRoFU0YAWgWR0CdnrO3UhFFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39b146915d6032c696d702171f9f6fbc42ada70ac9b97ccccdd74b569a92c888
3
+ size 147429
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd260546af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd260546b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd260546c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd260546ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd260546d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd260546dc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd260546e50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd260546ee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd260546f70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd26054a040>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd26054a0d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd26054a160>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fd262e664c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678897738292000445,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq2rryukbW6InwZutEfrbabVCo6IsQvOQAAgD8AAIA/Wt+fPa41q7qP2RM7vIdcNWOliLrlZym6AACAPwAAgD/AJpc9L282PSK3gb38yz6+kFysvasrtDwAAAAAAAAAAGYea7zh4J26yLabOJG9lzOt2Zq6h7SztwAAgD8AAIA/mmzLPEgbnLoF7QW44qTtslR4wLoWlBo3AACAPwAAgD9m59G8jwY6uj465brRwRS2jGeJOUnXBzoAAIA/AACAP6bl6D1cSxi6xoKlOkQVUTdjAE67alq0uQAAgD8AAIA/BhRCvvePTz/cLyk9U/PCvnEw5b0MfAA7AAAAAAAAAABzrMA9opBxPuUs4b39Bom++zlHPe2o6TsAAAAAAAAAAM1viTyF87250caDORwAGzWOLUQ7dkubuAAAgD8AAIA/M5OsOimEQbqiP9u64OpGtmPzITvZVwA6AACAPwAAgD/TGjQ+QaqkvK4yrzwb/EO7xGAPvhq0GrwAAIA/AACAP82PRb0UjLG6vx8st4CHHLKYxEM6utxENgAAgD8AAIA/s34WPQ8cILysBsE7N+sVPS83g72gcvE9AACAPwAAgD/NlKq9KXhrugVyJ7pPtB61ddlDO69xRDkAAIA/AACAP2ZSyjyPhji68pW6u/JXHjhCGi46wOIatwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgNWRIx2ZY0CUhpRSlIwBbJRN6AOMAXSUR0Cb/nsV+I/JdX2UKGgGaAloD0MIe4UF9wM9YECUhpRSlGgVTegDaBZHQJwYA1ejVQR1fZQoaAZoCWgPQwibkNYY9MZoQJSGlFKUaBVN6ANoFkdAnBgFUZNwi3V9lChoBmgJaA9DCFhxqrWwKGVAlIaUUpRoFU3oA2gWR0CcHhyBTXJ6dX2UKGgGaAloD0MI9zsUBfo3YECUhpRSlGgVTegDaBZHQJwicHs1KoR1fZQoaAZoCWgPQwhT6/1Gu/JkQJSGlFKUaBVN6ANoFkdAnCLEngHeJ3V9lChoBmgJaA9DCGUXDK653mRAlIaUUpRoFU3oA2gWR0CcJPV8Ti84dX2UKGgGaAloD0MIBcJOsepYZUCUhpRSlGgVTegDaBZHQJwm2ZNO/L11fZQoaAZoCWgPQwhn1lJAWmFuQJSGlFKUaBVNyAJoFkdAnCf1PWQOnXV9lChoBmgJaA9DCL048dUOoGZAlIaUUpRoFU3oA2gWR0CcP6IrvsqsdX2UKGgGaAloD0MIByeiX1sOZ0CUhpRSlGgVTegDaBZHQJxB4qVhTfl1fZQoaAZoCWgPQwhDxw4q8Y9mQJSGlFKUaBVN6ANoFkdAnEK8rmQr+nV9lChoBmgJaA9DCLix2ZFq8mRAlIaUUpRoFU3oA2gWR0CcRGPaL4vfdX2UKGgGaAloD0MI8ExoktgwYECUhpRSlGgVTegDaBZHQJxE18/lhgF1fZQoaAZoCWgPQwhVNNb+zopjQJSGlFKUaBVN6ANoFkdAnEZHZPEbYXV9lChoBmgJaA9DCC+ISE07AGNAlIaUUpRoFU3oA2gWR0CcSo1q33HrdX2UKGgGaAloD0MIrOC3IUamcUCUhpRSlGgVTQ0BaBZHQJxLUQUYbbV1fZQoaAZoCWgPQwicpPlj2klkQJSGlFKUaBVN6ANoFkdAnE7vfoA4oHV9lChoBmgJaA9DCDtu+N10umNAlIaUUpRoFU3oA2gWR0CcYKkfLcKxdX2UKGgGaAloD0MIeR7cnTXKYUCUhpRSlGgVTegDaBZHQJxgqlzltCR1fZQoaAZoCWgPQwi366UpgktwQJSGlFKUaBVNewNoFkdAnGWLhisnzHV9lChoBmgJaA9DCHJRLSKKFWRAlIaUUpRoFU3oA2gWR0CcZpcxTKkmdX2UKGgGaAloD0MIMpBnl+8MZkCUhpRSlGgVTegDaBZHQJxqfuPV/c51fZQoaAZoCWgPQwiAETRmEhloQJSGlFKUaBVN6ANoFkdAnGzKU/wAl3V9lChoBmgJaA9DCLpNuFdmZWhAlIaUUpRoFU3oA2gWR0CcbpZm7J4jdX2UKGgGaAloD0MISino9pIMY0CUhpRSlGgVTegDaBZHQJyK4eNkvsZ1fZQoaAZoCWgPQwjXaDnQwyRlQJSGlFKUaBVN6ANoFkdAnIyMoc7yQXV9lChoBmgJaA9DCMCUgQPapmZAlIaUUpRoFU3oA2gWR0CcjTdV/+bWdX2UKGgGaAloD0MISKMCJ1voZECUhpRSlGgVTegDaBZHQJyOoqOLiuN1fZQoaAZoCWgPQwjg88MIYTpgQJSGlFKUaBVN6ANoFkdAnI8FxXGOuXV9lChoBmgJaA9DCA5LAz8q02ZAlIaUUpRoFU3oA2gWR0CckDzlcQiBdX2UKGgGaAloD0MIUWwFTUtaZUCUhpRSlGgVTegDaBZHQJyTxdC3PRl1fZQoaAZoCWgPQwgq4Qm9/nlhQJSGlFKUaBVN6ANoFkdAnJSF8XvYvnV9lChoBmgJaA9DCG7Ek93ME2NAlIaUUpRoFU3oA2gWR0CcmINYr8R+dX2UKGgGaAloD0MI2Xkbmx2rZUCUhpRSlGgVTegDaBZHQJyrLjbSJCV1fZQoaAZoCWgPQwiARX79EO1nQJSGlFKUaBVN6ANoFkdAnKswCr92o3V9lChoBmgJaA9DCPlNYaUCH3NAlIaUUpRoFU1NAmgWR0Ccr0SP2f03dX2UKGgGaAloD0MI0zO9xNhZY0CUhpRSlGgVTegDaBZHQJyw+o/A0sR1fZQoaAZoCWgPQwjB4QURKVNkQJSGlFKUaBVN6ANoFkdAnLJhSYPXkHV9lChoBmgJaA9DCILmc+72BGBAlIaUUpRoFU3oA2gWR0Cct8QiRnvldX2UKGgGaAloD0MI+BbWjXfDY0CUhpRSlGgVTegDaBZHQJy66dat9x91fZQoaAZoCWgPQwhgysABrVJgQJSGlFKUaBVN6ANoFkdAnL2O3x4IKXV9lChoBmgJaA9DCHGNz2T/fmRAlIaUUpRoFU3oA2gWR0CcwfuGbkOqdX2UKGgGaAloD0MID+85sBzPYkCUhpRSlGgVTegDaBZHQJzWpxYJVsF1fZQoaAZoCWgPQwgn+RG/4plmQJSGlFKUaBVN6ANoFkdAnNdWxQizLXV9lChoBmgJaA9DCLDllettKVdAlIaUUpRoFU3oA2gWR0Cc2Jl7dBSldX2UKGgGaAloD0MIRFILJZM5Z0CUhpRSlGgVTegDaBZHQJzY/IvJzT51fZQoaAZoCWgPQwgaFqOuNbFnQJSGlFKUaBVN6ANoFkdAnN3IWHk92XV9lChoBmgJaA9DCOqXiLfOz2RAlIaUUpRoFU3oA2gWR0Cc3qGD+R5kdX2UKGgGaAloD0MIRG0bRkErZkCUhpRSlGgVTegDaBZHQJzjJ42S+xp1fZQoaAZoCWgPQwgb2ZWWkepuQJSGlFKUaBVNHgNoFkdAnPRHn+yZ8nV9lChoBmgJaA9DCLb4FADjxmNAlIaUUpRoFU3oA2gWR0Cc+/JDmbLEdX2UKGgGaAloD0MI8x/Sb98xZ0CUhpRSlGgVTegDaBZHQJz79Ok+HJt1fZQoaAZoCWgPQwjXiGAcXKtlQJSGlFKUaBVN6ANoFkdAnP8d96Tnq3V9lChoBmgJaA9DCHL5D+k3OmZAlIaUUpRoFU3oA2gWR0CdAU73fyf+dX2UKGgGaAloD0MIsqGb/YHXXUCUhpRSlGgVTegDaBZHQJ0E//EOy3V1fZQoaAZoCWgPQwgAWB050gpiQJSGlFKUaBVN6ANoFkdAnQb6YNRWLnV9lChoBmgJaA9DCGy1h73QZGRAlIaUUpRoFU3oA2gWR0CdCJBGhEjPdX2UKGgGaAloD0MI1xcJbbnwaECUhpRSlGgVTegDaBZHQJ0MoqDsdDJ1fZQoaAZoCWgPQwi+F1+0R+5kQJSGlFKUaBVN6ANoFkdAnQ4k2UB4lnV9lChoBmgJaA9DCESoUrMHgWhAlIaUUpRoFU3oA2gWR0CdJkL8JlasdX2UKGgGaAloD0MIvJNPj21uZECUhpRSlGgVTegDaBZHQJ0n+y2QXAN1fZQoaAZoCWgPQwgicCTQYIFmQJSGlFKUaBVN6ANoFkdAnSh5KraM73V9lChoBmgJaA9DCNGTMqkhY2FAlIaUUpRoFU3oA2gWR0CdL2WYWtU5dX2UKGgGaAloD0MIsn+eBozsZUCUhpRSlGgVTegDaBZHQJ0wg0sOG0x1fZQoaAZoCWgPQwg+IxEaQehiQJSGlFKUaBVN6ANoFkdAnTVD7MxGlXV9lChoBmgJaA9DCID0TZrGXXJAlIaUUpRoFU1AAmgWR0CdOppblijMdX2UKGgGaAloD0MIwTbiyW58ZUCUhpRSlGgVTegDaBZHQJ1A1Jrcj7h1fZQoaAZoCWgPQwhxAWiULk1vQJSGlFKUaBVNdAJoFkdAnUHEPlMh5nV9lChoBmgJaA9DCL03hgCgUHJAlIaUUpRoFU3iA2gWR0CdRkgH/tIDdX2UKGgGaAloD0MIADrMl5ctZkCUhpRSlGgVTegDaBZHQJ1GmRdQfp51fZQoaAZoCWgPQwgKSPsf4EpnQJSGlFKUaBVN6ANoFkdAnUnWqgh8pnV9lChoBmgJaA9DCK+UZYhjiXBAlIaUUpRoFU2gAmgWR0CdSkHRkVesdX2UKGgGaAloD0MIl8lwPJ9GZECUhpRSlGgVTegDaBZHQJ1MEIF/x2B1fZQoaAZoCWgPQwhIwVPIlVxhQJSGlFKUaBVN6ANoFkdAnVJ6Lfk3j3V9lChoBmgJaA9DCOrPfqQIHGFAlIaUUpRoFU3oA2gWR0CdWNeKbaysdX2UKGgGaAloD0MImYI1ziYWcUCUhpRSlGgVTZwDaBZHQJ1ZL3Gn4wh1fZQoaAZoCWgPQwifPZepiQJyQJSGlFKUaBVN6QJoFkdAnVqa4QSSNnV9lChoBmgJaA9DCIavr3UpBGRAlIaUUpRoFU3oA2gWR0CdWx9nbqQjdX2UKGgGaAloD0MI9GqA0pC+ckCUhpRSlGgVTWEBaBZHQJ1bUAS39aV1fZQoaAZoCWgPQwgDtK1mHYJhQJSGlFKUaBVN6ANoFkdAnXaEEX+ERXV9lChoBmgJaA9DCNL/ci0aaHNAlIaUUpRoFU12AmgWR0CdeYxcE/0NdX2UKGgGaAloD0MIZY16iEZzZkCUhpRSlGgVTegDaBZHQJ16/ssxwhp1fZQoaAZoCWgPQwiOjxZnjP1mQJSGlFKUaBVN6ANoFkdAnXuqW9lEqnV9lChoBmgJaA9DCOC6Ykb4k25AlIaUUpRoFU3+AWgWR0CdfCYm9g4PdX2UKGgGaAloD0MI7PtwkJCqZkCUhpRSlGgVTegDaBZHQJ2D4cKgIyF1fZQoaAZoCWgPQwgIPDCAcOtyQJSGlFKUaBVNTQFoFkdAnYQhi1Aqu3V9lChoBmgJaA9DCCL8i6CxNG5AlIaUUpRoFU2gAWgWR0CdhMAcDKYBdX2UKGgGaAloD0MIyXGndHDucUCUhpRSlGgVTdEBaBZHQJ2GVUOuq3p1fZQoaAZoCWgPQwj/IJIhh2lxQJSGlFKUaBVNogNoFkdAnYZ611GLDXV9lChoBmgJaA9DCNdrelDQhXBAlIaUUpRoFU06AWgWR0CdiLKWLP2PdX2UKGgGaAloD0MIWMnH7oKiZkCUhpRSlGgVTegDaBZHQJ2MR9NN8E51fZQoaAZoCWgPQwietHBZhdtlQJSGlFKUaBVN6ANoFkdAnYyDY7JXAHV9lChoBmgJaA9DCJATJoymJ3JAlIaUUpRoFU2uAmgWR0Cdj/H9m6GydX2UKGgGaAloD0MICAWlaOVOc0CUhpRSlGgVTawCaBZHQJ2QVH6Mzdl1fZQoaAZoCWgPQwiI1oo2x1NyQJSGlFKUaBVN4QNoFkdAnZCIm9g4O3V9lChoBmgJaA9DCJSERNpG/WxAlIaUUpRoFU24AWgWR0CdlPENOM2ndX2UKGgGaAloD0MIN1SM87cvYkCUhpRSlGgVTegDaBZHQJ2WOXWvr4Z1fZQoaAZoCWgPQwh9JCU9DHJyQJSGlFKUaBVNgQNoFkdAnZqtTcZccHV9lChoBmgJaA9DCJlKP+EsF3FAlIaUUpRoFU0YAWgWR0CdnrO3UhFFdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a2643691bd2652973bdd96adf7531266797773bc99419db2f623f3d266254b2
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d47fc9a32802999e9d6d8528ab28e67888cbf08cbdbe1d437c55af668a068f67
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (242 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 267.2275101627703, "std_reward": 24.527008865157576, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T16:52:50.698804"}