File size: 38,710 Bytes
6dc8c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
#!/usr/bin/env python3
"""
Advanced Magnus Model Backend Integration
Loads and serves the latest trained advanced Magnus model for FastAPI
"""

import sys
import pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from pathlib import Path
from typing import Dict, List, Tuple, Optional, Any
from collections import Counter
import chess
import chess.pgn
import yaml
import json
import warnings

warnings.filterwarnings("ignore")

# Add project root to path
project_root = Path(__file__).parent.parent.parent
sys.path.append(str(project_root))


class AdvancedChessFeatureExtractor:
    """Extract advanced chess features for better move prediction"""

    def __init__(self):
        self.piece_values = {
            "p": 1,
            "n": 3,
            "b": 3,
            "r": 5,
            "q": 9,
            "k": 0,
            "P": 1,
            "N": 3,
            "B": 3,
            "R": 5,
            "Q": 9,
            "K": 0,
        }

    def extract_features(self, position_data):
        """Extract comprehensive position features"""
        features = []

        # Basic piece counts and material balance
        white_material = sum(
            self.piece_values.get(p, 0) for p in str(position_data) if p.isupper()
        )
        black_material = sum(
            self.piece_values.get(p, 0) for p in str(position_data) if p.islower()
        )
        material_balance = white_material - black_material

        # Feature vector
        features.extend(
            [
                white_material / 39.0,  # Normalized material (max = Q+2R+2B+2N+8P)
                black_material / 39.0,
                material_balance / 39.0,
                abs(material_balance) / 39.0,  # Material imbalance magnitude
            ]
        )

        # Game phase estimation (opening/middlegame/endgame)
        total_material = white_material + black_material
        game_phase = total_material / 78.0  # 0 = endgame, 1 = opening
        features.extend(
            [
                game_phase,
                1 - game_phase,  # Endgame indicator
                min(game_phase * 2, 1),  # Opening indicator
                max(0, min((game_phase - 0.3) * 2, 1)),  # Middlegame indicator
            ]
        )

        return np.array(features, dtype=np.float32)


class MultiHeadAttention(nn.Module):
    """Multi-head attention mechanism for position encoding"""

    def __init__(self, d_model, num_heads):
        super().__init__()
        self.d_model = d_model
        self.num_heads = num_heads
        self.d_k = d_model // num_heads

        self.W_q = nn.Linear(d_model, d_model)
        self.W_k = nn.Linear(d_model, d_model)
        self.W_v = nn.Linear(d_model, d_model)
        self.W_o = nn.Linear(d_model, d_model)

    def forward(self, x):
        batch_size = x.size(0)

        # Linear transformations
        Q = self.W_q(x).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
        K = self.W_k(x).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
        V = self.W_v(x).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)

        # Attention
        scores = torch.matmul(Q, K.transpose(-2, -1)) / np.sqrt(self.d_k)
        attn = F.softmax(scores, dim=-1)
        context = torch.matmul(attn, V)

        # Concatenate heads
        context = (
            context.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)
        )
        output = self.W_o(context)

        return output.mean(dim=1)  # Global average pooling


class AdvancedMagnusModel(nn.Module):
    """Advanced Magnus model architecture matching the trained model"""

    def __init__(self, vocab_size: int, feature_dim: int = 8):
        super().__init__()
        self.vocab_size = vocab_size

        # Advanced board encoder with residual connections
        self.board_encoder = nn.Sequential(
            nn.Linear(768, 1024),
            nn.BatchNorm1d(1024),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(1024, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(512, 256),
            nn.BatchNorm1d(256),
            nn.ReLU(),
        )

        # Multi-head attention mechanism for board understanding
        self.board_attention = MultiHeadAttention(256, 8)

        # Advanced feature encoder
        self.feature_encoder = nn.Sequential(
            nn.Linear(feature_dim, 64),
            nn.BatchNorm1d(64),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(64, 32),
            nn.ReLU(),
        )

        # Combined feature processing
        combined_dim = 256 + 32
        self.feature_combiner = nn.Sequential(
            nn.Linear(combined_dim, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(512, 256),
            nn.BatchNorm1d(256),
            nn.ReLU(),
            nn.Dropout(0.2),
        )

        # Move prediction with multiple paths
        self.move_predictor = nn.Sequential(
            nn.Linear(256, 512),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(512, vocab_size),
        )

        # Evaluation head
        self.eval_predictor = nn.Sequential(
            nn.Linear(256, 128),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(128, 64),
            nn.ReLU(),
            nn.Linear(64, 1),
            nn.Tanh(),
        )

    def forward(self, position, features):
        # Process board position
        board_enc = self.board_encoder(position)

        # Apply attention (reshape for attention if needed)
        if len(board_enc.shape) == 2:
            board_enc_reshaped = board_enc.unsqueeze(1)  # Add sequence dimension
            board_att = self.board_attention(board_enc_reshaped)
        else:
            board_att = self.board_attention(board_enc)

        # Process additional features
        feature_enc = self.feature_encoder(features)

        # Combine features
        combined = torch.cat([board_att, feature_enc], dim=1)
        combined = self.feature_combiner(combined)

        # Predictions
        move_logits = self.move_predictor(combined)
        eval_pred = self.eval_predictor(combined)

        return move_logits, eval_pred


class AdvancedMagnusPredictor:
    """Advanced Magnus model predictor for FastAPI backend"""

    def __init__(self, model_path: Optional[str] = None):
        self.device = self._get_device()
        self.model = None
        self.move_to_idx = {}
        self.idx_to_move = {}
        self.vocab_size = 0
        self.model_config = {}
        self.feature_extractor = AdvancedChessFeatureExtractor()

        # Default to latest MLflow model if no path provided
        if model_path is None:
            model_path = self._get_latest_mlflow_model()

        if model_path and Path(model_path).exists():
            self.load_model(model_path)
        else:
            print(f"⚠️ Model path not found: {model_path}")

    def _get_device(self):
        """Get the best available device"""
        if torch.backends.mps.is_available():
            return torch.device("mps")
        elif torch.cuda.is_available():
            return torch.device("cuda")
        else:
            return torch.device("cpu")

    def _get_latest_mlflow_model(self):
        """Get the latest MLflow model path"""
        # Try multiple possible paths
        possible_paths = [
            project_root
            / "mlruns"
            / "427589957554434254"
            / "cbb3fccf10b64db5a8985add8bcac5ef"
            / "artifacts"
            / "model_artifacts",
            Path(__file__).parent.parent
            / "mlruns"
            / "427589957554434254"
            / "cbb3fccf10b64db5a8985add8bcac5ef"
            / "artifacts"
            / "model_artifacts",
            Path(
                "/Users/levandalbashvili/Documents/GitHub/What-Would---DO/mlruns/427589957554434254/cbb3fccf10b64db5a8985add8bcac5ef/artifacts/model_artifacts"
            ),
        ]

        for path in possible_paths:
            if path.exists():
                print(f"βœ… Found model at: {path}")
                return str(path)

        print(f"❌ Model not found in any of these paths:")
        for path in possible_paths:
            print(f"   - {path}")
        return None

    def load_model(self, model_path: str):
        """Load the trained model"""
        try:
            model_path = Path(model_path)

            # Load configuration
            config_file = model_path / "config.yaml"
            if config_file.exists():
                with open(config_file, "r") as f:
                    self.model_config = yaml.safe_load(f)
                print(f"βœ… Loaded model config: {config_file}")

            # Load version info
            version_file = model_path / "version.json"
            if version_file.exists():
                with open(version_file, "r") as f:
                    version_info = json.load(f)
                print(f"βœ… Model version: {version_info.get('model_id', 'unknown')}")

            # Load the model state dict
            model_file = model_path / "model.pth"
            if not model_file.exists():
                raise FileNotFoundError(f"Model file not found: {model_file}")

            checkpoint = torch.load(model_file, map_location=self.device)

            # Extract model components
            if "model_state_dict" in checkpoint:
                model_state = checkpoint["model_state_dict"]
                self.move_to_idx = checkpoint.get("move_to_idx", {})
                self.idx_to_move = checkpoint.get("idx_to_move", {})
                self.vocab_size = checkpoint.get("vocab_size", len(self.move_to_idx))
            else:
                # Handle direct state dict
                model_state = checkpoint

                # Try to load vocabulary from config
                vocab_size = self.model_config.get("vocab_size", 2000)  # Default
                self.vocab_size = vocab_size

            # Check if vocabulary is missing and create it
            if not self.move_to_idx or len(self.move_to_idx) == 0:
                print(
                    "⚠️ Move vocabulary not found in checkpoint, creating from chess games"
                )
                # Get vocab size from model architecture
                vocab_size = self.model_config.get("data", {}).get("vocab_size", 945)
                self.vocab_size = vocab_size
                self._create_vocabulary_from_games()

            # Initialize model
            vocab_size = self.model_config.get("data", {}).get("vocab_size", 945)
            feature_dim = 8  # The saved model was trained with 8 features
            self.vocab_size = vocab_size
            self.model = AdvancedMagnusModel(self.vocab_size, feature_dim).to(
                self.device
            )

            # Load state dict
            self.model.load_state_dict(model_state)
            self.model.eval()

            total_params = sum(p.numel() for p in self.model.parameters())
            print(f"βœ… Advanced Magnus model loaded successfully!")
            print(f"   Device: {self.device}")
            print(f"   Parameters: {total_params:,}")
            print(f"   Vocabulary size: {self.vocab_size}")
            print(f"   Model path: {model_path}")

        except Exception as e:
            print(f"❌ Error loading model: {e}")
            self.model = None

    def _create_vocabulary_from_games(self):
        """Create vocabulary from actual chess games (like the training data)"""
        print("πŸ”§ Creating vocabulary from Magnus Carlsen games...")

        moves = set()

        # Try to load moves from available PGN files
        pgn_paths = [
            Path(__file__).parent / "data_processing" / "carlsen-games-quarter.pgn",
            Path(__file__).parent / "data_processing" / "carlsen-games.pgn",
        ]

        games_processed = 0
        for pgn_path in pgn_paths:
            if pgn_path.exists():
                print(f"πŸ“– Reading moves from {pgn_path.name}...")
                try:
                    with open(pgn_path, "r") as f:
                        while True:
                            game = chess.pgn.read_game(f)
                            if game is None:
                                break

                            # Extract all moves from the game
                            board = game.board()
                            for move in game.mainline_moves():
                                moves.add(move.uci())
                                board.push(move)

                            games_processed += 1
                            if games_processed % 100 == 0:
                                print(
                                    f"   Processed {games_processed} games, {len(moves)} unique moves"
                                )

                            # Limit games processed to avoid too long loading
                            if games_processed >= 500:
                                break

                    if moves:
                        break  # We have enough moves from this file

                except Exception as e:
                    print(f"   ⚠️ Error reading {pgn_path}: {e}")
                    continue

        # If we couldn't read from PGN files, fall back to comprehensive UCI generation
        if not moves:
            print("πŸ“ Falling back to comprehensive UCI move generation...")
            moves = self._generate_comprehensive_uci_moves()

        # Convert to sorted list and limit to vocab_size
        moves_list = sorted(list(moves))
        if len(moves_list) > self.vocab_size:
            # Keep the most common/basic moves first
            basic_moves = []
            promotion_moves = []
            other_moves = []

            for move in moves_list:
                if len(move) == 5 and move[4] in "qrbn":  # Promotion
                    promotion_moves.append(move)
                elif len(move) == 4:  # Basic move
                    basic_moves.append(move)
                else:
                    other_moves.append(move)

            # Prioritize basic moves, then promotions, then others
            moves_list = (basic_moves + promotion_moves + other_moves)[
                : self.vocab_size
            ]

        # Pad if needed
        while len(moves_list) < self.vocab_size:
            moves_list.append(f"null_move_{len(moves_list)}")

        self.move_to_idx = {move: idx for idx, move in enumerate(moves_list)}
        self.idx_to_move = {idx: move for move, idx in self.move_to_idx.items()}

        print(
            f"βœ… Created vocabulary with {len(self.move_to_idx)} moves from {games_processed} games"
        )
        print(f"   Sample moves: {moves_list[:10]}")
        print(f"   Last moves: {moves_list[-10:]}")

    def _generate_comprehensive_uci_moves(self):
        """Generate comprehensive UCI moves as fallback"""
        moves = set()
        files = "abcdefgh"
        ranks = "12345678"

        # All possible square-to-square moves
        for from_file in files:
            for from_rank in ranks:
                for to_file in files:
                    for to_rank in ranks:
                        from_sq = from_file + from_rank
                        to_sq = to_file + to_rank
                        if from_sq != to_sq:
                            moves.add(from_sq + to_sq)

        # Pawn promotions
        promotion_pieces = ["q", "r", "b", "n"]
        for from_file in files:
            for to_file in files:
                # White promotions (rank 7 to 8)
                for piece in promotion_pieces:
                    moves.add(f"{from_file}7{to_file}8{piece}")
                # Black promotions (rank 2 to 1)
                for piece in promotion_pieces:
                    moves.add(f"{from_file}2{to_file}1{piece}")

        return moves

    def board_to_tensor(self, board: chess.Board) -> torch.Tensor:
        """Convert chess board to tensor representation"""
        # Create 768-dimensional board representation (8x8x12)
        board_tensor = np.zeros((8, 8, 12), dtype=np.float32)

        piece_map = {
            chess.PAWN: 0,
            chess.ROOK: 1,
            chess.KNIGHT: 2,
            chess.BISHOP: 3,
            chess.QUEEN: 4,
            chess.KING: 5,
        }

        for square in chess.SQUARES:
            piece = board.piece_at(square)
            if piece is not None:
                rank, file = divmod(square, 8)
                piece_type = piece_map[piece.piece_type]
                color_offset = 0 if piece.color == chess.WHITE else 6
                board_tensor[rank, file, piece_type + color_offset] = 1.0

        return torch.FloatTensor(board_tensor.flatten())

    def extract_features(self, board: chess.Board) -> torch.Tensor:
        """Extract advanced features from the board position"""
        # Get FEN string for the feature extractor
        fen = board.fen()

        # Use the advanced feature extractor
        features = self.feature_extractor.extract_features(fen)

        return torch.FloatTensor(features)

    def predict_moves(self, board: chess.Board, top_k: int = 5) -> List[Dict[str, Any]]:
        """Predict top-k moves prioritizing best moves with Magnus style flavor"""
        if self.model is None:
            return [{"move": "e2e4", "confidence": 0.5, "evaluation": 0.0}]

        try:
            # Get legal moves first
            legal_moves = list(board.legal_moves)

            if not legal_moves:
                return []

            # Strategy: Start with chess engine quality, then add Magnus flavor
            predictions = []

            # Get quick engine analysis for all legal moves
            try:
                import chess.engine

                with chess.engine.SimpleEngine.popen_uci(
                    "/opt/homebrew/bin/stockfish"
                ) as engine:
                    # Analyze current position briefly
                    main_info = engine.analyse(board, chess.engine.Limit(time=0.1))

                    for legal_move in legal_moves:
                        # Make the move and evaluate
                        board_copy = board.copy()
                        board_copy.push(legal_move)

                        try:
                            # Quick evaluation
                            move_info = engine.analyse(
                                board_copy, chess.engine.Limit(time=0.03)
                            )
                            move_score = move_info.get(
                                "score",
                                chess.engine.PovScore(
                                    chess.engine.Cp(0), board_copy.turn
                                ),
                            )

                            # Calculate move quality based on engine
                            if move_score.is_mate():
                                if move_score.mate() > 0:
                                    engine_quality = 0.95
                                else:
                                    engine_quality = 0.05
                            else:
                                # Get centipawn evaluation from the side to move's perspective
                                cp_score = move_score.white().score(mate_score=10000)
                                if not board.turn:  # Black to move
                                    cp_score = -cp_score

                                # Convert to quality score (0.1 to 0.9)
                                engine_quality = max(
                                    0.1, min(0.9, 0.5 + cp_score / 300)
                                )

                        except:
                            engine_quality = 0.5  # Neutral if evaluation fails

                        # Add Magnus style bonus (small influence)
                        magnus_bonus = 0.0
                        move_uci = legal_move.uci()

                        # Check if move is in Magnus's vocabulary
                        if move_uci in self.move_to_idx:
                            try:
                                with torch.no_grad():
                                    position_tensor = (
                                        self.board_to_tensor(board)
                                        .unsqueeze(0)
                                        .to(self.device)
                                    )
                                    features_tensor = (
                                        self.extract_features(board)
                                        .unsqueeze(0)
                                        .to(self.device)
                                    )
                                    move_logits, _ = self.model(
                                        position_tensor, features_tensor
                                    )
                                    move_probs = F.softmax(move_logits, dim=1)

                                    idx = self.move_to_idx[move_uci]
                                    magnus_style_score = float(
                                        move_probs[0, idx].item()
                                    )
                                    magnus_bonus = (
                                        magnus_style_score * 0.1
                                    )  # Only 10% influence
                            except:
                                magnus_bonus = 0.0

                        # Apply chess heuristics
                        heuristic_bonus = self._calculate_heuristic_bonus(
                            board, legal_move
                        )

                        # Final score: 80% engine quality, 10% Magnus style, 10% heuristics
                        final_confidence = (
                            0.8 * engine_quality
                            + 0.1 * magnus_bonus
                            + 0.1 * heuristic_bonus
                        )

                        predictions.append(
                            {
                                "move": move_uci,
                                "confidence": final_confidence,
                                "evaluation": (
                                    cp_score if "cp_score" in locals() else 0.0
                                ),
                                "engine_quality": engine_quality,
                                "magnus_bonus": magnus_bonus,
                                "heuristic_bonus": heuristic_bonus,
                                "is_legal": True,
                                "approach": "engine_primary",
                            }
                        )

            except Exception as e:
                print(f"Engine analysis failed, using heuristics only: {e}")
                # Fallback to heuristics-based approach
                for legal_move in legal_moves:
                    move_uci = legal_move.uci()

                    # Base quality from heuristics
                    heuristic_score = self._calculate_comprehensive_heuristic_score(
                        board, legal_move
                    )

                    # Small Magnus style influence
                    magnus_bonus = 0.0
                    if move_uci in self.move_to_idx:
                        try:
                            with torch.no_grad():
                                position_tensor = (
                                    self.board_to_tensor(board)
                                    .unsqueeze(0)
                                    .to(self.device)
                                )
                                features_tensor = (
                                    self.extract_features(board)
                                    .unsqueeze(0)
                                    .to(self.device)
                                )
                                move_logits, _ = self.model(
                                    position_tensor, features_tensor
                                )
                                move_probs = F.softmax(move_logits, dim=1)

                                idx = self.move_to_idx[move_uci]
                                magnus_style_score = float(move_probs[0, idx].item())
                                magnus_bonus = (
                                    magnus_style_score * 0.2
                                )  # Slightly higher without engine
                        except:
                            magnus_bonus = 0.0

                    final_confidence = 0.8 * heuristic_score + 0.2 * magnus_bonus

                    predictions.append(
                        {
                            "move": move_uci,
                            "confidence": final_confidence,
                            "evaluation": 0.0,
                            "heuristic_score": heuristic_score,
                            "magnus_bonus": magnus_bonus,
                            "is_legal": True,
                            "approach": "heuristic_primary",
                        }
                    )

            # Sort by confidence and return top-k
            predictions.sort(key=lambda x: x["confidence"], reverse=True)
            return predictions[:top_k]

        except Exception as e:
            print(f"❌ Prediction error: {e}")
            # Return safe defaults with legal moves
            legal_moves = list(board.legal_moves)
            if legal_moves:
                return [
                    {
                        "move": legal_moves[i % len(legal_moves)].uci(),
                        "confidence": max(0.15 - i * 0.02, 0.05),
                        "evaluation": 0.0,
                        "error": str(e),
                        "approach": "fallback",
                    }
                    for i in range(min(top_k, len(legal_moves)))
                ]
            else:
                return [
                    {
                        "move": "e2e4",
                        "confidence": 0.1,
                        "evaluation": 0.0,
                        "error": str(e),
                    }
                ]

    def _calculate_heuristic_bonus(self, board: chess.Board, move: chess.Move) -> float:
        """Calculate a small heuristic bonus for the move"""
        bonus = 0.0
        piece = board.piece_at(move.from_square)

        if piece:
            # Center control
            center_squares = [chess.E4, chess.E5, chess.D4, chess.D5]
            if move.to_square in center_squares:
                bonus += 0.05

            # Piece development in opening
            if (
                piece.piece_type in [chess.KNIGHT, chess.BISHOP]
                and board.fullmove_number <= 10
            ):
                bonus += 0.03

            # Captures
            if board.is_capture(move):
                captured = board.piece_at(move.to_square)
                if captured:
                    piece_values = {
                        chess.PAWN: 1,
                        chess.KNIGHT: 3,
                        chess.BISHOP: 3,
                        chess.ROOK: 5,
                        chess.QUEEN: 9,
                    }
                    if piece_values.get(captured.piece_type, 0) >= piece_values.get(
                        piece.piece_type, 0
                    ):
                        bonus += 0.04

            # Checks
            if board.gives_check(move):
                bonus += 0.02

            # Castling
            if board.is_castling(move) and board.fullmove_number <= 15:
                bonus += 0.06

        return min(bonus, 0.15)  # Cap the bonus

    def _calculate_comprehensive_heuristic_score(
        self, board: chess.Board, move: chess.Move
    ) -> float:
        """Calculate a comprehensive heuristic score for a move (used when engine is unavailable)"""
        score = 0.5  # Base score
        piece = board.piece_at(move.from_square)

        if piece:
            # Piece values and basic principles
            piece_values = {
                chess.PAWN: 1,
                chess.KNIGHT: 3,
                chess.BISHOP: 3,
                chess.ROOK: 5,
                chess.QUEEN: 9,
                chess.KING: 0,
            }

            # Center control (major bonus)
            center_squares = [chess.E4, chess.E5, chess.D4, chess.D5]
            extended_center = [
                chess.C3,
                chess.C4,
                chess.C5,
                chess.C6,
                chess.D3,
                chess.D6,
                chess.E3,
                chess.E6,
                chess.F3,
                chess.F4,
                chess.F5,
                chess.F6,
            ]

            if move.to_square in center_squares:
                score += 0.15
            elif move.to_square in extended_center:
                score += 0.08

            # Opening principles
            if board.fullmove_number <= 10:
                if piece.piece_type in [chess.KNIGHT, chess.BISHOP]:
                    score += 0.12  # Develop pieces
                elif (
                    piece.piece_type == chess.PAWN and move.to_square in center_squares
                ):
                    score += 0.10  # Central pawns

            # Captures (evaluate by material gain)
            if board.is_capture(move):
                captured = board.piece_at(move.to_square)
                if captured:
                    material_gain = piece_values.get(
                        captured.piece_type, 0
                    ) - piece_values.get(piece.piece_type, 0)
                    if material_gain >= 0:
                        score += min(0.2, 0.05 + material_gain * 0.02)
                    else:
                        score -= 0.1  # Bad capture

            # Castling
            if board.is_castling(move):
                score += 0.15

            # Checks (can be good or bad)
            if board.gives_check(move):
                score += 0.05  # Modest bonus for checks

            # Avoid moving same piece twice in opening
            if board.fullmove_number <= 8:
                # Check if this piece has moved before
                moves_history = list(board.move_stack)
                piece_moved_before = any(
                    m.from_square == move.from_square for m in moves_history[-6:]
                )
                if piece_moved_before and piece.piece_type != chess.PAWN:
                    score -= 0.08

        return max(0.1, min(0.9, score))  # Clamp between 0.1 and 0.9

    def predict_moves_with_engine_guidance(
        self,
        board: chess.Board,
        top_k: int = 5,
        engine_path: str = "/opt/homebrew/bin/stockfish",
    ) -> List[Dict[str, Any]]:
        """Predict moves combining Magnus style with engine guidance for better quality"""
        try:
            import chess.engine

            # Get Magnus-style predictions first
            magnus_predictions = self.predict_moves(
                board, top_k * 2
            )  # Get more candidates

            # Analyze with engine
            with chess.engine.SimpleEngine.popen_uci(engine_path) as engine:
                # Get top engine moves
                info = engine.analyse(
                    board, chess.engine.Limit(time=0.1), multipv=top_k
                )

                enhanced_predictions = []

                for pred in magnus_predictions:
                    move_uci = pred["move"]
                    try:
                        move = chess.Move.from_uci(move_uci)
                        if move in board.legal_moves:
                            # Get engine evaluation of this move
                            board_copy = board.copy()
                            board_copy.push(move)

                            try:
                                eval_info = engine.analyse(
                                    board_copy, chess.engine.Limit(time=0.05)
                                )
                                score = eval_info.get("score")

                                # Convert engine score to confidence adjustment
                                engine_confidence = 0.5  # Base
                                if score:
                                    if score.is_mate():
                                        if score.mate() > 0:
                                            engine_confidence = 0.95
                                        else:
                                            engine_confidence = 0.05
                                    else:
                                        cp_score = score.white().score(mate_score=10000)
                                        if board.turn == chess.BLACK:
                                            cp_score = -cp_score
                                        # Convert centipawn to confidence (better moves get higher confidence)
                                        engine_confidence = max(
                                            0.1, min(0.9, 0.5 + cp_score / 500)
                                        )

                                # Blend Magnus style with engine evaluation
                                magnus_weight = 0.6  # 60% Magnus style
                                engine_weight = 0.4  # 40% engine evaluation

                                blended_confidence = (
                                    magnus_weight * pred["confidence"]
                                    + engine_weight * engine_confidence
                                )

                                enhanced_predictions.append(
                                    {
                                        "move": move_uci,
                                        "confidence": blended_confidence,
                                        "evaluation": pred.get("evaluation", 0.0),
                                        "magnus_confidence": pred["confidence"],
                                        "engine_confidence": engine_confidence,
                                        "style": "magnus_engine_hybrid",
                                    }
                                )

                            except:
                                # If engine analysis fails, use original prediction
                                enhanced_predictions.append(pred)
                    except:
                        continue

                # Sort by blended confidence
                enhanced_predictions.sort(key=lambda x: x["confidence"], reverse=True)
                return enhanced_predictions[:top_k]

        except Exception as e:
            print(f"Engine guidance failed, falling back to Magnus-only: {e}")
            return self.predict_moves(board, top_k)

    def _apply_chess_heuristics(
        self, board: chess.Board, predictions: List[Dict[str, Any]]
    ) -> List[Dict[str, Any]]:
        """Apply chess heuristics to improve prediction quality"""

        for pred in predictions:
            move_uci = pred["move"]
            try:
                move = chess.Move.from_uci(move_uci)
                confidence_boost = 0.0

                # Boost confidence for good chess principles
                piece = board.piece_at(move.from_square)
                if piece:
                    # Center control (e4, e5, d4, d5)
                    center_squares = [chess.E4, chess.E5, chess.D4, chess.D5]
                    if move.to_square in center_squares:
                        confidence_boost += 0.02

                    # Piece development (knights and bishops)
                    if piece.piece_type in [chess.KNIGHT, chess.BISHOP]:
                        if board.fullmove_number <= 10:  # Opening phase
                            confidence_boost += 0.03

                    # Captures are generally good
                    if board.is_capture(move):
                        captured_piece = board.piece_at(move.to_square)
                        if captured_piece:
                            # Higher value captures get more boost
                            piece_values = {
                                chess.PAWN: 1,
                                chess.KNIGHT: 3,
                                chess.BISHOP: 3,
                                chess.ROOK: 5,
                                chess.QUEEN: 9,
                            }
                            capture_value = piece_values.get(
                                captured_piece.piece_type, 0
                            )
                            attacking_value = piece_values.get(piece.piece_type, 0)
                            if capture_value >= attacking_value:  # Good trades
                                confidence_boost += 0.04

                    # Checks can be good (but not always)
                    if board.gives_check(move):
                        confidence_boost += 0.02

                    # Castling is usually good in opening/middlegame
                    if board.is_castling(move) and board.fullmove_number <= 15:
                        confidence_boost += 0.05

                # Apply the boost
                pred["confidence"] = min(0.95, pred["confidence"] + confidence_boost)
                pred["heuristic_boost"] = confidence_boost

            except Exception as e:
                # If we can't analyze the move, keep original confidence
                pred["heuristic_boost"] = 0.0

        return predictions

    def is_loaded(self) -> bool:
        """Check if the model is successfully loaded"""
        return self.model is not None


# Global instance for FastAPI
_magnus_predictor = None


def get_magnus_predictor() -> AdvancedMagnusPredictor:
    """Get the global Magnus predictor instance"""
    global _magnus_predictor
    if _magnus_predictor is None:
        _magnus_predictor = AdvancedMagnusPredictor()
    return _magnus_predictor


def test_predictor():
    """Test the predictor with a simple position"""
    predictor = AdvancedMagnusPredictor()

    if predictor.is_loaded():
        board = chess.Board()
        predictions = predictor.predict_moves(board, top_k=3)

        print("πŸ§ͺ Test Predictions:")
        for i, pred in enumerate(predictions, 1):
            print(f"  {i}. {pred['move']} (confidence: {pred['confidence']:.3f})")
    else:
        print("❌ Predictor not loaded")


if __name__ == "__main__":
    test_predictor()