File size: 6,186 Bytes
9031f04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from collections import defaultdict
from contextlib import nullcontext
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union

import torch
from transformers import BatchEncoding, Trainer
from trl import DPOTrainer
from trl.trainer.utils import disable_dropout_in_model

from ...extras.constants import IGNORE_INDEX


if TYPE_CHECKING:
    from transformers import PreTrainedModel


class CustomDPOTrainer(DPOTrainer):
    def __init__(
        self,
        beta: float,
        loss_type: Literal["sigmoid", "hinge", "ipo", "kto"],
        ftx_gamma: float,
        model: Union["PreTrainedModel", torch.nn.Module],
        ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]] = None,
        disable_dropout: Optional[bool] = True,
        **kwargs,
    ):
        if disable_dropout:
            disable_dropout_in_model(model)
            if ref_model is not None:
                disable_dropout_in_model(ref_model)

        self.use_dpo_data_collator = True  # hack to avoid warning
        self.generate_during_eval = False  # disable at evaluation
        self.label_pad_token_id = IGNORE_INDEX
        self.padding_value = 0
        self.is_encoder_decoder = model.config.is_encoder_decoder
        self.precompute_ref_log_probs = False
        self._precomputed_train_ref_log_probs = False
        self._precomputed_eval_ref_log_probs = False
        self._peft_has_been_casted_to_bf16 = False

        self.ref_model = ref_model
        self.beta = beta
        self.label_smoothing = 0
        self.loss_type = loss_type
        self.ftx_gamma = ftx_gamma
        self._stored_metrics = defaultdict(lambda: defaultdict(list))

        Trainer.__init__(self, model=model, **kwargs)
        if not hasattr(self, "accelerator"):
            raise AttributeError("Please update `transformers`.")

        if ref_model is not None:
            if self.is_deepspeed_enabled:
                if not (
                    getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False)
                ):  # quantized models are already set on the correct device
                    self.ref_model = self._prepare_deepspeed(self.ref_model)
            else:
                self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)

    def sft_loss(self, chosen_logits: torch.FloatTensor, chosen_labels: torch.LongTensor) -> torch.Tensor:
        r"""
        Computes supervised cross-entropy loss of given labels under the given logits.

        Returns:
            A tensor of shape (batch_size,) containing the cross-entropy loss of each samples.
        """
        all_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True)
        return -all_logps

    def concatenated_forward(
        self, model: "PreTrainedModel", batch: Dict[str, torch.Tensor]
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
        batch_copied = BatchEncoding({k: v.detach().clone() for k, v in batch.items()})  # avoid error

        all_logits = model(
            input_ids=batch_copied["input_ids"], attention_mask=batch_copied["attention_mask"], return_dict=True
        ).logits.to(torch.float32)

        all_logps = self.get_batch_logps(
            all_logits,
            batch["labels"],
            average_log_prob=False,
            label_pad_token_id=self.label_pad_token_id,
        )
        batch_size = batch["input_ids"].size(0) // 2
        chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
        chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
        return chosen_logps, rejected_logps, chosen_logits, rejected_logits

    def get_batch_loss_metrics(
        self,
        model: "PreTrainedModel",
        batch: Dict[str, torch.Tensor],
        train_eval: Optional[Literal["train", "eval"]] = "train",
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
        r"""
        Computes the DPO loss and other metrics for the given batch of inputs for train or test.
        """
        metrics = {}
        (
            policy_chosen_logps,
            policy_rejected_logps,
            policy_chosen_logits,
            policy_rejected_logits,
        ) = self.concatenated_forward(model, batch)
        with torch.no_grad():
            if self.ref_model is None:
                ref_model = self.model
                ref_context = self.accelerator.unwrap_model(self.model).disable_adapter()
            else:
                ref_model = self.ref_model
                ref_context = nullcontext()

            with ref_context:
                (
                    reference_chosen_logps,
                    reference_rejected_logps,
                    _,
                    _,
                ) = self.concatenated_forward(ref_model, batch)

        losses, chosen_rewards, rejected_rewards = self.dpo_loss(
            policy_chosen_logps,
            policy_rejected_logps,
            reference_chosen_logps,
            reference_rejected_logps,
        )
        if self.ftx_gamma > 1e-6:
            batch_size = batch["input_ids"].size(0) // 2
            chosen_labels, _ = batch["labels"].split(batch_size, dim=0)
            losses += self.ftx_gamma * self.sft_loss(policy_chosen_logits, chosen_labels)

        reward_accuracies = (chosen_rewards > rejected_rewards).float()

        prefix = "eval_" if train_eval == "eval" else ""
        metrics[f"{prefix}rewards/chosen"] = chosen_rewards.cpu().mean()
        metrics[f"{prefix}rewards/rejected"] = rejected_rewards.cpu().mean()
        metrics[f"{prefix}rewards/accuracies"] = reward_accuracies.cpu().mean()
        metrics[f"{prefix}rewards/margins"] = (chosen_rewards - rejected_rewards).cpu().mean()
        metrics[f"{prefix}logps/rejected"] = policy_rejected_logps.detach().cpu().mean()
        metrics[f"{prefix}logps/chosen"] = policy_chosen_logps.detach().cpu().mean()
        metrics[f"{prefix}logits/rejected"] = policy_rejected_logits.detach().cpu().mean()
        metrics[f"{prefix}logits/chosen"] = policy_chosen_logits.detach().cpu().mean()

        return losses.mean(), metrics