File size: 3,623 Bytes
158765b
 
4fc7b1e
 
 
2faf902
4fc7b1e
 
 
 
 
158765b
 
4fc7b1e
158765b
4fc7b1e
158765b
4fc7b1e
158765b
 
 
 
 
 
 
 
4fc7b1e
 
 
4e384c1
158765b
 
 
 
4fc7b1e
 
 
 
 
 
 
 
 
158765b
4fc7b1e
158765b
4fc7b1e
158765b
4fc7b1e
 
 
158765b
4fc7b1e
158765b
4fc7b1e
 
158765b
4fc7b1e
 
 
158765b
4fc7b1e
158765b
 
4fc7b1e
 
 
158765b
4fc7b1e
 
158765b
4fc7b1e
158765b
4fc7b1e
 
 
 
 
 
 
 
 
 
158765b
4fc7b1e
 
f4f92cc
4fc7b1e
 
 
158765b
 
 
 
 
4fc7b1e
 
 
 
158765b
 
 
 
 
 
 
4fc7b1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
library_name: transformers
tags:
- asr
- arabic
license: cc-by-nc-4.0
datasets:
- rsalshalan/MGB2
language:
- ar
pipeline_tag: automatic-speech-recognition
---

# Model Card for ArTST_v2

# ArTST (ASR task)

ArTST model finetuned for  automatic speech recognition (speech-to-text) on MGB2. 


### Model Description

<!-- Provide a longer summary of what this model is. -->

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** Speech Lab, MBZUAI
- **Model type:** SpeechT5
- **Language:** Arabic
- **Finetuned from:** [ArTST pretrained](https://github.com/mbzuai-nlp/ArTST)


## How to Get Started with the Model

```python
import soundfile as sf
from transformers import (
    SpeechT5Config,
    SpeechT5FeatureExtractor,
    SpeechT5ForSpeechToText,
    SpeechT5Processor,
    SpeechT5Tokenizer,
)

from custom_tokenizer import CustomTextTokenizer

device = "cuda" if torch.cuda.is_available() else "cpu"

tokenizer = SpeechT5Tokenizer.from_pretrained("mbzuai/artst_asr_v2")
processor = SpeechT5Processor.from_pretrained("mbzuai/artst_asr_v2" , tokenizer=tokenizer)
model = SpeechT5ForSpeechToText.from_pretrained("mbzuai/artst_asr_v2").to(device)

audio, sr = sf.read("audio.wav")

inputs = processor(audio=audio, sampling_rate=sr, return_tensors="pt")
predicted_ids = model.generate(**inputs.to(device), max_length=250)

transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
print(transcription[0])
```

## Usage with Pipeline


```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline

device = "cuda"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

model_id = "MBZUAI/artst_asr_v2"

processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id).to(device)
pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    torch_dtype=torch_dtype,
    device=device,
)

audio , sr = sf.read("path/to/audio/file")
if sr != 16000: 
  audio = librosa.resample(audio), orig_sr=sr, target_sr=16000)
result = pipe(audio)
print(result['text'])
```





### Model Sources [optional]
- **Repository:** [github](https://github.com/mbzuai-nlp/ArTST)
- **Paper :** [Arxiv](https://arxiv.org/abs/2411.05872)
<!-- - **Demo [optional]:** [More Information Needed] -->


## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**
```
@misc{djanibekov2024dialectalcoveragegeneralizationarabic,
      title={Dialectal Coverage And Generalization in Arabic Speech Recognition}, 
      author={Amirbek Djanibekov and Hawau Olamide Toyin and Raghad Alshalan and Abdullah Alitr and Hanan Aldarmaki},
      year={2024},
      eprint={2411.05872},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2411.05872}, 
}

@inproceedings{toyin-etal-2023-artst,
    title = "{A}r{TST}: {A}rabic Text and Speech Transformer",
    author = "Toyin, Hawau  and
      Djanibekov, Amirbek  and
      Kulkarni, Ajinkya  and
      Aldarmaki, Hanan",
    booktitle = "Proceedings of ArabicNLP 2023",
    month = dec,
    year = "2023",
    address = "Singapore (Hybrid)",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.arabicnlp-1.5",
    doi = "10.18653/v1/2023.arabicnlp-1.5",
    pages = "41--51",
}
```