|
{ |
|
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json", |
|
"version": "0.0.4", |
|
"changelog": { |
|
"0.0.4": "enhanced metadata with improved descriptions and task specification", |
|
"0.0.3": "update to huggingface hosting", |
|
"0.0.2": "update large file yml", |
|
"0.0.1": "Initial version" |
|
}, |
|
"monai_version": "1.4.0", |
|
"pytorch_version": "2.4.0", |
|
"numpy_version": "1.24.4", |
|
"required_packages_version": { |
|
"pytorch-ignite": "0.4.11", |
|
"pyyaml": "6.0.2" |
|
}, |
|
"supported_apps": {}, |
|
"name": "Medical Image Classification Template", |
|
"task": "Template for 2D Medical Image Classification", |
|
"description": "A comprehensive template for developing 2D medical image classification models, featuring a modular architecture and standardized training pipeline. The template supports single-channel 128x128 pixel input images and outputs 4-class probability distributions, serving as a foundation for custom medical image classification tasks.", |
|
"authors": "Yun Liu", |
|
"copyright": "Copyright (c) 2023 MONAI Consortium", |
|
"network_data_format": { |
|
"inputs": { |
|
"image": { |
|
"type": "image", |
|
"format": "magnitude", |
|
"modality": "none", |
|
"num_channels": 1, |
|
"spatial_shape": [ |
|
128, |
|
128 |
|
], |
|
"dtype": "float32", |
|
"value_range": [], |
|
"is_patch_data": false, |
|
"channel_def": { |
|
"0": "image" |
|
} |
|
} |
|
}, |
|
"outputs": { |
|
"pred": { |
|
"type": "probabilities", |
|
"format": "classes", |
|
"num_channels": 4, |
|
"spatial_shape": [ |
|
1, |
|
4 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1, |
|
2, |
|
3 |
|
], |
|
"is_patch_data": false, |
|
"channel_def": { |
|
"0": "background", |
|
"1": "circle", |
|
"2": "triangle", |
|
"3": "rectangle" |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|