# This file contains the changes to implement DDP training with the train.yaml config. device: "$torch.device('cuda:' + os.environ['LOCAL_RANK'])" # assumes GPU # matches rank # # wrap the network in a DistributedDataParallel instance, moving it to the chosen device for this process network: _target_: torch.nn.parallel.DistributedDataParallel module: $@network_def.to(@device) device_ids: ['@device'] find_unused_parameters: true train_sampler: _target_: DistributedSampler dataset: '@train_dataset' even_divisible: true shuffle: true train_dataloader#sampler: '@train_sampler' train_dataloader#shuffle: false val_sampler: _target_: DistributedSampler dataset: '@val_dataset' even_divisible: false shuffle: false val_dataloader#sampler: '@val_sampler' initialize: - $import torch.distributed as dist - $dist.init_process_group(backend='nccl') - $torch.cuda.set_device(@device) - $monai.utils.set_determinism(seed=123) # may want to choose a different seed or not do this here run: - '$@trainer.run()' finalize: - '$dist.is_initialized() and dist.destroy_process_group()'