|
{ |
|
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json", |
|
"version": "0.0.6", |
|
"changelog": { |
|
"0.0.6": "enhance metadata with improved descriptions", |
|
"0.0.5": "update to huggingface hosting", |
|
"0.0.4": "Set image_only to False", |
|
"0.0.3": "Update for stable MONAI version", |
|
"0.0.2": "Retrain with new MONAI", |
|
"0.0.1": "initialize the model package structure" |
|
}, |
|
"monai_version": "1.3.0", |
|
"pytorch_version": "1.13.1", |
|
"numpy_version": "1.22.2", |
|
"required_packages_version": { |
|
"fire": "0.5.0", |
|
"nibabel": "5.1.0", |
|
"pytorch-ignite": "0.4.11", |
|
"pyyaml": "6.0.2" |
|
}, |
|
"supported_apps": {}, |
|
"name": "Multi-organ Abdominal Segmentation", |
|
"task": "Multi-organ Segmentation in Abdominal CT Images", |
|
"description": "A 3D segmentation model optimized through Neural Architecture Search (DiNTS) that processes 96x96x96 pixel patches from CT scans to segment eight abdominal organs and structures. The model achieves a mean Dice score of 0.88 across all structures, including liver, spleen, pancreas, stomach, gallbladder, and vascular structures (artery and portal vein).", |
|
"authors": "Chen Shen, Holger R. Roth, Kazunari Misawa, Kensaku Mori", |
|
"copyright": "", |
|
"data_source": "Aichi Cancer Center, Japan", |
|
"data_type": "nibabel", |
|
"image_classes": "single channel data, intensity scaled to [0, 1]", |
|
"label_classes": "eight channels data, 1 is artery, 2 is portal vein, 3 is liver, 4 is spleen, 5 is stomach, 6 is gallbladder, 7 is pancreas, 0 is everything else", |
|
"pred_classes": "8 channels OneHot data, 1 is artery, 2 is portal vein, 3 is liver, 4 is spleen, 5 is stomach, 6 is gallbladder, 7 is pancreas, 0 is background", |
|
"eval_metrics": { |
|
"mean_dice": 0.88 |
|
}, |
|
"intended_use": "This is an example, not to be used for diagnostic purposes", |
|
"references": [ |
|
"He, Y., Yang, D., Roth, H., Zhao, C. and Xu, D., 2021. Dints: Differentiable neural network topology search for 3d medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5841-5850).", |
|
"Roth, H., Shen C, Oda H., Sugino T., Oda M., Hayashi Y., Misawa K., Mori K., 2018. A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation. International conference on medical image computing and computer-assisted intervention", |
|
"Shen, C., Roth, H. R., Nath, V., Hayashi, Y., Oda, M., Misawa, K., Mori, K., 2022. Effective hyperparameter optimization with proxy data for multi-organ segmentation. In Medical Imaging 2022: Image Processing (Vol. 12032, pp. 200-206)" |
|
], |
|
"network_data_format": { |
|
"inputs": { |
|
"image": { |
|
"type": "image", |
|
"format": "hounsfield", |
|
"modality": "CT", |
|
"num_channels": 1, |
|
"spatial_shape": [ |
|
96, |
|
96, |
|
96 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "image" |
|
} |
|
} |
|
}, |
|
"outputs": { |
|
"pred": { |
|
"type": "image", |
|
"format": "segmentation", |
|
"num_channels": 8, |
|
"spatial_shape": [ |
|
96, |
|
96, |
|
96 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1, |
|
2, |
|
3, |
|
4, |
|
5, |
|
6, |
|
7 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "background", |
|
"1": "artery", |
|
"2": "portal vein", |
|
"3": "liver", |
|
"4": "spleen", |
|
"5": "stomach", |
|
"6": "gallbladder", |
|
"7": "pancreas" |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|