_BASE_: "Base-RCNN-FPN.yaml" MODEL: WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl" PIXEL_STD: [57.375, 57.120, 58.395] MASK_ON: True RESNETS: STRIDE_IN_1X1: False # this is a C2 model NUM_GROUPS: 32 WIDTH_PER_GROUP: 8 DEPTH: 101 ROI_HEADS: NUM_CLASSES: 1 SCORE_THRESH_TEST: 0.001 NMS_THRESH_TEST: .01 INPUT: MIN_SIZE_TRAIN: (496,) MIN_SIZE_TEST: 496 SOLVER: BASE_LR: 0.02 #GAMMA: 0.05 #STEPS: (3000, 7000, 11000, 15000) #MAX_ITER: 18000 GAMMA: 0.1 STEPS: (3000, 4500) MAX_ITER: 6000 CHECKPOINT_PERIOD: 300 IMS_PER_BATCH: 14 TEST: DETECTIONS_PER_IMAGE: 30 # LVIS allows up to 300 EVAL_PERIOD: 300 DATALOADER: SAMPLER_TRAIN: "RepeatFactorTrainingSampler" REPEAT_THRESHOLD: 0.001 NUM_WORKERS: 4 # DATASETS: # TRAIN: ("fold1","fold2","fold3","fold4",) # TEST: ("fold5",) # OUTPUT_DIR: "./output_valid_fold5" # DATASETS: # TRAIN: ("fold2","fold3","fold4","fold5",) # TEST: ("fold1",) # OUTPUT_DIR: "./output_valid_fold1" # DATASETS: # TRAIN: ("fold3","fold4","fold5","fold1",) # TEST: ("fold2",) # OUTPUT_DIR: "./output_valid_fold2" # DATASETS: # TRAIN: ("fold4","fold5","fold1","fold2",) # TEST: ("fold3",) # OUTPUT_DIR: "./output_valid_fold3" # DATASETS: # TRAIN: ("fold5","fold1","fold2","fold3",) # TEST: ("fold4",) # OUTPUT_DIR: "./output_valid_fold4" #modifiying to commit again