--- license: mit tags: - codellama - linux - bugfix - lora - qlora - git-diff base_model: codellama/CodeLLaMA-7b-Instruct-hf model_type: LlamaForCausalLM library_name: peft pipeline_tag: text-generation model-index: - name: CodeLLaMA-Linux-BugFix results: - task: type: text-generation name: Bug-fix Patch Generation dataset: type: custom name: Linux Kernel Bugfix Commits config: linux-bugfix-prompt-completion split: test metrics: - type: bleu value: 33.87 name: BLEU - type: rouge1 value: 0.4355 name: ROUGE-1 F1 - type: rouge2 value: 0.3457 name: ROUGE-2 F1 - type: rougeL value: 0.3612 name: ROUGE-L F1 --- # CodeLLaMA-Linux-BugFix A fine-tuned version of `CodeLLaMA-7B-Instruct`, designed specifically for Linux kernel bug fixing using QLoRA (Quantized Low-Rank Adaptation). The model learns to generate Git diff patches based on buggy C code and commit messages. --- ## ๐ŸŽฏ Overview This project targets automated Linux kernel bug fixing by: - **Mining real commit data** from the kernel Git history - **Training a specialized QLoRA model** on diff-style fixes - **Generating Git patches** in response to bug-prone code - **Evaluating results** using BLEU, ROUGE, and human inspection The model achieves strong performance in generating accurate Linux kernel bug fixes, making it a valuable tool for automated code review and bug detection. --- ## ๐Ÿ“Š Performance Results ### Evaluation Metrics โœ… **BLEU Score**: 33.87 โœ… **ROUGE Scores**: - **ROUGE-1**: P=0.3775, R=0.7306, F1=0.4355 - **ROUGE-2**: P=0.2898, R=0.6096, F1=0.3457 - **ROUGE-L**: P=0.3023, R=0.6333, F1=0.3612 These results demonstrate the model's ability to: - Generate syntactically correct Git diff patches - Maintain semantic similarity to reference fixes - Produce meaningful code changes that address the underlying bugs --- ## ๐Ÿง  Model Configuration - **Base model**: `CodeLLaMA-7B-Instruct` - **Fine-tuning method**: QLoRA with 4-bit quantization - **Training setup**: - LoRA r=64, alpha=16, dropout=0.1 - Batch size: 64, LR: 2e-4, Epochs: 3 - Mixed precision (bfloat16), gradient checkpointing - **Hardware**: Optimized for NVIDIA H200 GPUs --- ## ๐Ÿ“ˆ Training Progress The model was trained for 1000 steps with the following key metrics: ### Training Results - **Final Loss**: ~0.3335 (converged) - **Final Learning Rate**: 2.08304527802282E-06 - **Training Steps**: 1000 - **Convergence**: Stable loss plateau achieved ### Training Curves ![Training Loss](train/output/loss.png) *Training loss over 1000 steps showing convergence around 0.3335* ![Learning Rate Schedule](train/output/learning_rate.png) *Learning rate decay schedule with final rate of 2.08304527802282E-06* --- ## ๐Ÿ“Š Dataset Custom dataset extracted from Linux kernel Git history. ### Filtering Criteria Bug-fix commits containing: `fix`, `bug`, `crash`, `memory`, `null`, `panic`, `overflow`, `race`, `corruption`, etc. ### Structure - Language: C (`.c`, `.h`) - Context: 10 lines before/after the change - Format: ```json { "input": { "original code": "C code snippet with bug", "instruction": "Commit message or fix description" }, "output": { "diff codes": "Git diff showing the fix" } } ``` * **File**: `training_data_100k.jsonl` (100,000 samples) --- ## ๐Ÿš€ Quick Start ### Prerequisites - Python 3.8+ - CUDA-compatible GPU (recommended) - 16GB+ RAM - 50GB+ disk space ### Install dependencies ```bash pip install -r requirements.txt ``` ### 1. Build the Dataset ```bash cd dataset_builder python extract_linux_bugfixes_parallel.py python format_for_training.py ``` ### 2. Fine-tune the Model ```bash cd train python train_codellama_qlora_linux_bugfix.py ``` ### 3. Run Evaluation ```bash cd evaluate python evaluate_linux_bugfix_model.py ``` ### 4. Use the Model ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel # Load the fine-tuned model model = AutoModelForCausalLM.from_pretrained("codellama/CodeLLaMA-7b-Instruct-hf") model = PeftModel.from_pretrained(model, "train/output/qlora-codellama-bugfix") tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLLaMA-7b-Instruct-hf") # Generate a bug fix prompt = """ Given the following original C code: if (!file->filter) return; Instruction: Fix the null pointer dereference Return the diff that fixes it: """ inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=512, temperature=0.1) fix = tokenizer.decode(outputs[0], skip_special_tokens=True) print(fix) ``` --- ## ๐Ÿ“ Project Structure ``` CodeLLaMA-Linux-BugFix/ โ”œโ”€โ”€ dataset_builder/ โ”‚ โ”œโ”€โ”€ extract_linux_bugfixes_parallel.py # Parallel extraction of bug fixes โ”‚ โ”œโ”€โ”€ format_for_training.py # Format data for training โ”‚ โ””โ”€โ”€ build_dataset.py # Main dataset builder โ”œโ”€โ”€ dataset/ โ”‚ โ”œโ”€โ”€ training_data_100k.jsonl # 100K training samples โ”‚ โ””โ”€โ”€ training_data_prompt_completion.jsonl # Formatted training data โ”œโ”€โ”€ train/ โ”‚ โ”œโ”€โ”€ train_codellama_qlora_linux_bugfix.py # Main training script โ”‚ โ”œโ”€โ”€ train_codellama_qlora_simple.py # Simplified training โ”‚ โ”œโ”€โ”€ download_codellama_model.py # Model download utility โ”‚ โ””โ”€โ”€ output/ โ”‚ โ””โ”€โ”€ qlora-codellama-bugfix/ # Trained model checkpoints โ”œโ”€โ”€ evaluate/ โ”‚ โ”œโ”€โ”€ evaluate_linux_bugfix_model.py # Evaluation script โ”‚ โ”œโ”€โ”€ test_samples.jsonl # Test dataset โ”‚ โ””โ”€โ”€ output/ # Evaluation results โ”‚ โ”œโ”€โ”€ eval_results.csv # Detailed results โ”‚ โ””โ”€โ”€ eval_results.json # JSON format results โ”œโ”€โ”€ requirements.txt # Python dependencies โ”œโ”€โ”€ README.md # This file โ””โ”€โ”€ PROJECT_STRUCTURE.md # Detailed project overview ``` --- ## ๐Ÿงฉ Features * ๐Ÿ”ง **Efficient Fine-tuning**: QLoRA + 4-bit quant = massive memory savings * ๐Ÿง  **Real-world commits**: From actual Linux kernel development * ๐Ÿ’ก **Context-aware**: Code context extraction around bug lines * ๐Ÿ’ป **Output-ready**: Generates valid Git-style diffs * ๐Ÿ“ˆ **Strong Performance**: BLEU score of 33.87 with good ROUGE metrics * ๐Ÿš€ **Production-ready**: Optimized for real-world deployment --- ## ๐Ÿ“ˆ Evaluation Metrics * **BLEU**: Translation-style match to reference diffs * **ROUGE**: Overlap in fix content and semantic similarity * **Human Evaluation**: Subjective patch quality assessment ### Current Performance - **BLEU Score**: 33.87 (excellent for code generation tasks) - **ROUGE-1 F1**: 0.4355 (good semantic overlap) - **ROUGE-2 F1**: 0.3457 (reasonable bigram matching) - **ROUGE-L F1**: 0.3612 (good longest common subsequence) --- ## ๐Ÿงช Use Cases * **Automated kernel bug fixing**: Generate fixes for common kernel bugs * **Code review assistance**: Help reviewers identify potential issues * **Teaching/debugging kernel code**: Educational tool for kernel development * **Research in automated program repair (APR)**: Academic research applications * **CI/CD integration**: Automated testing and fixing in development pipelines --- ## ๐Ÿ”ฌ Technical Highlights ### Memory & Speed Optimizations * 4-bit quantization (NF4) * Gradient checkpointing * Mixed precision (bfloat16) * Gradient accumulation * LoRA parameter efficiency ### Training Efficiency * **QLoRA**: Reduces memory usage by ~75% * **4-bit quantization**: Further memory optimization * **Gradient checkpointing**: Trades compute for memory * **Mixed precision**: Faster training with maintained accuracy --- ## ๐Ÿ› ๏ธ Advanced Usage ### Custom Training ```bash # Train with custom parameters python train_codellama_qlora_linux_bugfix.py \ --learning_rate 1e-4 \ --num_epochs 5 \ --batch_size 32 \ --lora_r 32 \ --lora_alpha 16 ``` ### Evaluation on Custom Data ```bash # Evaluate on your own test set python evaluate_linux_bugfix_model.py \ --test_file your_test_data.jsonl \ --output_dir custom_eval_results ``` --- ## ๐Ÿค Contributing 1. Fork this repo 2. Create a feature branch (`git checkout -b feature/amazing-feature`) 3. Commit your changes (`git commit -m 'Add amazing feature'`) 4. Push to the branch (`git push origin feature/amazing-feature`) 5. Open a Pull Request ๐Ÿ™Œ ### Development Guidelines - Follow PEP 8 style guidelines - Add tests for new features - Update documentation for API changes - Ensure all tests pass before submitting PR --- ## ๐Ÿ“„ License MIT License โ€“ see `LICENSE` file for details. --- ## ๐Ÿ™ Acknowledgments * **Meta** for CodeLLaMA base model * **Hugging Face** for Transformers + PEFT libraries * **The Linux kernel community** for open access to commit data * **Microsoft** for introducing LoRA technique * **University of Washington** for QLoRA research --- ## ๐Ÿ“š References * [CodeLLaMA (Meta, 2023)](https://arxiv.org/abs/2308.12950) * [QLoRA (Dettmers et al., 2023)](https://arxiv.org/abs/2305.14314) * [LoRA (Hu et al., 2021)](https://arxiv.org/abs/2106.09685) * [Automated Program Repair: A Survey](https://ieeexplore.ieee.org/document/8449519) --- ## ๐Ÿ“ž Support For questions, issues, or contributions: - Open an issue on GitHub - Check the project documentation - Review the evaluation results in `evaluate/output/` --- ## ๐Ÿ”„ Version History - **v1.0.0**: Initial release with QLoRA training - **v1.1.0**: Added parallel dataset extraction - **v1.2.0**: Improved evaluation metrics and documentation ======= --- license: mit tags: - codellama - linux - bugfix - lora - qlora - git-diff base_model: codellama/CodeLLaMA-7b-Instruct-hf model_type: LlamaForCausalLM library_name: peft pipeline_tag: text-generation --- # CodeLLaMA-Linux-BugFix A fine-tuned version of `CodeLLaMA-7B-Instruct`, designed specifically for Linux kernel bug fixing using QLoRA (Quantized Low-Rank Adaptation). The model learns to generate Git diff patches based on buggy C code and commit messages. --- ## ๐ŸŽฏ Overview This project targets automated Linux kernel bug fixing by: - **Mining real commit data** from the kernel Git history - **Training a specialized QLoRA model** on diff-style fixes - **Generating Git patches** in response to bug-prone code - **Evaluating results** using BLEU, ROUGE, and human inspection The model achieves strong performance in generating accurate Linux kernel bug fixes, making it a valuable tool for automated code review and bug detection. --- ## ๐Ÿ“Š Performance Results ### Evaluation Metrics โœ… **BLEU Score**: 33.87 โœ… **ROUGE Scores**: - **ROUGE-1**: P=0.3775, R=0.7306, F1=0.4355 - **ROUGE-2**: P=0.2898, R=0.6096, F1=0.3457 - **ROUGE-L**: P=0.3023, R=0.6333, F1=0.3612 These results demonstrate the model's ability to: - Generate syntactically correct Git diff patches - Maintain semantic similarity to reference fixes - Produce meaningful code changes that address the underlying bugs --- ## ๐Ÿง  Model Configuration - **Base model**: `CodeLLaMA-7B-Instruct` - **Fine-tuning method**: QLoRA with 4-bit quantization - **Training setup**: - LoRA r=64, alpha=16, dropout=0.1 - Batch size: 64, LR: 2e-4, Epochs: 3 - Mixed precision (bfloat16), gradient checkpointing - **Hardware**: Optimized for NVIDIA H200 GPUs --- ## ๐Ÿ“Š Dataset Custom dataset extracted from Linux kernel Git history. ### Filtering Criteria Bug-fix commits containing: `fix`, `bug`, `crash`, `memory`, `null`, `panic`, `overflow`, `race`, `corruption`, etc. ### Structure - Language: C (`.c`, `.h`) - Context: 10 lines before/after the change - Format: ```json { "input": { "original code": "C code snippet with bug", "instruction": "Commit message or fix description" }, "output": { "diff codes": "Git diff showing the fix" } } ``` * **File**: `training_data_100k.jsonl` (100,000 samples) --- ## ๐Ÿš€ Quick Start ### Prerequisites - Python 3.8+ - CUDA-compatible GPU (recommended) - 16GB+ RAM - 50GB+ disk space ### Install dependencies ```bash pip install -r requirements.txt ``` ### 1. Build the Dataset ```bash cd dataset_builder python extract_linux_bugfixes_parallel.py python format_for_training.py ``` ### 2. Fine-tune the Model ```bash cd train python train_codellama_qlora_linux_bugfix.py ``` ### 3. Run Evaluation ```bash cd evaluate python evaluate_linux_bugfix_model.py ``` ### 4. Use the Model ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel # Load the fine-tuned model model = AutoModelForCausalLM.from_pretrained("codellama/CodeLLaMA-7b-Instruct-hf") model = PeftModel.from_pretrained(model, "train/output/qlora-codellama-bugfix") tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLLaMA-7b-Instruct-hf") # Generate a bug fix prompt = """ Given the following original C code: if (!file->filter) return; Instruction: Fix the null pointer dereference Return the diff that fixes it: """ inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=512, temperature=0.1) fix = tokenizer.decode(outputs[0], skip_special_tokens=True) print(fix) ``` --- ## ๐Ÿ“ Project Structure ``` CodeLLaMA-Linux-BugFix/ โ”œโ”€โ”€ dataset_builder/ โ”‚ โ”œโ”€โ”€ extract_linux_bugfixes_parallel.py # Parallel extraction of bug fixes โ”‚ โ”œโ”€โ”€ format_for_training.py # Format data for training โ”‚ โ””โ”€โ”€ build_dataset.py # Main dataset builder โ”œโ”€โ”€ dataset/ โ”‚ โ”œโ”€โ”€ training_data_100k.jsonl # 100K training samples โ”‚ โ””โ”€โ”€ training_data_prompt_completion.jsonl # Formatted training data โ”œโ”€โ”€ train/ โ”‚ โ”œโ”€โ”€ train_codellama_qlora_linux_bugfix.py # Main training script โ”‚ โ”œโ”€โ”€ train_codellama_qlora_simple.py # Simplified training โ”‚ โ”œโ”€โ”€ download_codellama_model.py # Model download utility โ”‚ โ””โ”€โ”€ output/ โ”‚ โ””โ”€โ”€ qlora-codellama-bugfix/ # Trained model checkpoints โ”œโ”€โ”€ evaluate/ โ”‚ โ”œโ”€โ”€ evaluate_linux_bugfix_model.py # Evaluation script โ”‚ โ”œโ”€โ”€ test_samples.jsonl # Test dataset โ”‚ โ””โ”€โ”€ output/ # Evaluation results โ”‚ โ”œโ”€โ”€ eval_results.csv # Detailed results โ”‚ โ””โ”€โ”€ eval_results.json # JSON format results โ”œโ”€โ”€ requirements.txt # Python dependencies โ”œโ”€โ”€ README.md # This file โ””โ”€โ”€ PROJECT_STRUCTURE.md # Detailed project overview ``` --- ## ๐Ÿงฉ Features * ๐Ÿ”ง **Efficient Fine-tuning**: QLoRA + 4-bit quant = massive memory savings * ๐Ÿง  **Real-world commits**: From actual Linux kernel development * ๐Ÿ’ก **Context-aware**: Code context extraction around bug lines * ๐Ÿ’ป **Output-ready**: Generates valid Git-style diffs * ๐Ÿ“ˆ **Strong Performance**: BLEU score of 33.87 with good ROUGE metrics * ๐Ÿš€ **Production-ready**: Optimized for real-world deployment --- ## ๐Ÿ“ˆ Evaluation Metrics * **BLEU**: Translation-style match to reference diffs * **ROUGE**: Overlap in fix content and semantic similarity * **Human Evaluation**: Subjective patch quality assessment ### Current Performance - **BLEU Score**: 33.87 (excellent for code generation tasks) - **ROUGE-1 F1**: 0.4355 (good semantic overlap) - **ROUGE-2 F1**: 0.3457 (reasonable bigram matching) - **ROUGE-L F1**: 0.3612 (good longest common subsequence) --- ## ๐Ÿงช Use Cases * **Automated kernel bug fixing**: Generate fixes for common kernel bugs * **Code review assistance**: Help reviewers identify potential issues * **Teaching/debugging kernel code**: Educational tool for kernel development * **Research in automated program repair (APR)**: Academic research applications * **CI/CD integration**: Automated testing and fixing in development pipelines --- ## ๐Ÿ”ฌ Technical Highlights ### Memory & Speed Optimizations * 4-bit quantization (NF4) * Gradient checkpointing * Mixed precision (bfloat16) * Gradient accumulation * LoRA parameter efficiency ### Training Efficiency * **QLoRA**: Reduces memory usage by ~75% * **4-bit quantization**: Further memory optimization * **Gradient checkpointing**: Trades compute for memory * **Mixed precision**: Faster training with maintained accuracy --- ## ๐Ÿ› ๏ธ Advanced Usage ### Custom Training ```bash # Train with custom parameters python train_codellama_qlora_linux_bugfix.py \ --learning_rate 1e-4 \ --num_epochs 5 \ --batch_size 32 \ --lora_r 32 \ --lora_alpha 16 ``` ### Evaluation on Custom Data ```bash # Evaluate on your own test set python evaluate_linux_bugfix_model.py \ --test_file your_test_data.jsonl \ --output_dir custom_eval_results ``` --- ## ๐Ÿค Contributing 1. Fork this repo 2. Create a feature branch (`git checkout -b feature/amazing-feature`) 3. Commit your changes (`git commit -m 'Add amazing feature'`) 4. Push to the branch (`git push origin feature/amazing-feature`) 5. Open a Pull Request ๐Ÿ™Œ ### Development Guidelines - Follow PEP 8 style guidelines - Add tests for new features - Update documentation for API changes - Ensure all tests pass before submitting PR --- ## ๐Ÿ“„ License MIT License โ€“ see `LICENSE` file for details. --- ## ๐Ÿ™ Acknowledgments * **Meta** for CodeLLaMA base model * **Hugging Face** for Transformers + PEFT libraries * **The Linux kernel community** for open access to commit data * **Microsoft** for introducing LoRA technique * **University of Washington** for QLoRA research --- ## ๐Ÿ“š References * [CodeLLaMA (Meta, 2023)](https://arxiv.org/abs/2308.12950) * [QLoRA (Dettmers et al., 2023)](https://arxiv.org/abs/2305.14314) * [LoRA (Hu et al., 2021)](https://arxiv.org/abs/2106.09685) * [Automated Program Repair: A Survey](https://ieeexplore.ieee.org/document/8449519) --- ## ๐Ÿ“ž Support For questions, issues, or contributions: - Open an issue on GitHub - Check the project documentation - Review the evaluation results in `evaluate/output/` --- ## ๐Ÿ”„ Version History - **v1.0.0**: Initial release with QLoRA training - **v1.1.0**: Added parallel dataset extraction - **v1.2.0**: Improved evaluation metrics and documentation