File size: 6,341 Bytes
f1a31f1
 
 
 
 
 
 
 
 
 
 
 
af53722
 
 
 
 
 
f1a31f1
 
 
 
 
7551eb1
 
f1a31f1
 
 
 
 
 
 
 
 
 
 
af53722
 
 
 
 
 
f1a31f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af53722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a31f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

---
tags:
- bertopic
library_name: bertopic
---

# BERTopic_Multimodal

This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. 
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. 

This model was trained on 8000 images from Flickr **without** the captions. This demonstrates how BERTopic can be used for topic modeling using images as input only. 

A few examples of generated topics:

!["multimodal.png"](multimodal.png)

## Usage 

To use this model, please install BERTopic:

```
pip install -U bertopic[vision]
pip install -U safetensors
```

You can use the model as follows:

```python
from bertopic import BERTopic
topic_model = BERTopic.load("MaartenGr/BERTopic_Multimodal")

topic_model.get_topic_info()
```

You can view all information about a topic as follows:

```python
topic_model.get_topic(topic_id, full=True)
```

## Topic overview

* Number of topics: 29
* Number of training documents: 8091

<details>
  <summary>Click here for an overview of all topics.</summary>
  
  | Topic ID | Topic Keywords | Topic Frequency | Label | 
|----------|----------------|-----------------|-------| 
| -1 | while - air - the - in - jumping | 34 | -1_while_air_the_in | 
| 0 | bench - sitting - people - woman - street | 1132 | 0_bench_sitting_people_woman | 
| 1 | grass - running - dog - grassy - field | 1693 | 1_grass_running_dog_grassy | 
| 2 | boy - girl - little - young - holding | 1290 | 2_boy_girl_little_young | 
| 3 | dog - frisbee - running - water - mouth | 1224 | 3_dog_frisbee_running_water | 
| 4 | skateboard - ramp - doing - trick - cement | 415 | 4_skateboard_ramp_doing_trick | 
| 5 | snow - dog - covered - running - through | 309 | 5_snow_dog_covered_running | 
| 6 | mountain - range - slope - standing - person | 205 | 6_mountain_range_slope_standing | 
| 7 | pool - blue - boy - toy - water | 189 | 7_pool_blue_boy_toy | 
| 8 | trail - bike - down - riding - person | 166 | 8_trail_bike_down_riding | 
| 9 | snowboarder - mid - jump - air - after | 126 | 9_snowboarder_mid_jump_air | 
| 10 | rock - climbing - up - wall - tree | 124 | 10_rock_climbing_up_wall | 
| 11 | wave - surfboard - top - riding - of | 112 | 11_wave_surfboard_top_riding | 
| 12 | beach - surfboard - people - with - walking | 102 | 12_beach_surfboard_people_with | 
| 13 | jumping - track - horse - racquet - dog | 98 | 13_jumping_track_horse_racquet | 
| 14 | snowboard - snow - girl - hill - slope | 95 | 14_snowboard_snow_girl_hill | 
| 15 | game - being - football - played - professional | 91 | 15_game_being_football_played | 
| 16 | soccer - kicking - team - ball - player | 80 | 16_soccer_kicking_team_ball | 
| 17 | dirt - bike - person - rider - going | 75 | 17_dirt_bike_person_rider | 
| 18 | soccer - boys - field - ball - kicking | 69 | 18_soccer_boys_field_ball | 
| 19 | baseball - player - bat - swinging - into | 63 | 19_baseball_player_bat_swinging | 
| 20 | basketball - up - and - playing - jumping | 59 | 20_basketball_up_and_playing | 
| 21 | bird - body - flying - over - long | 55 | 21_bird_body_flying_over | 
| 22 | motorcycle - track - race - racer - racing | 55 | 22_motorcycle_track_race_racer | 
| 23 | boat - sitting - water - lake - hose | 53 | 23_boat_sitting_water_lake | 
| 24 | street - riding - down - bike - woman | 52 | 24_street_riding_down_bike | 
| 25 | paddle - suit - paddling - water - in | 49 | 25_paddle_suit_paddling_water | 
| 26 | pair - scissors - stage - white - shirt | 42 | 26_pair_scissors_stage_white | 
| 27 | tennis - court - racket - racquet - swinging | 34 | 27_tennis_court_racket_racquet |
  
</details>

## Training Procedure

The data was retrieved as follows:

```python
import os
import glob
import zipfile
import numpy as np
import pandas as pd
from tqdm import tqdm
from sentence_transformers import util

# Flickr 8k images
img_folder = 'photos/'
caps_folder = 'captions/'
if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0:
    os.makedirs(img_folder, exist_ok=True)

    if not os.path.exists('Flickr8k_Dataset.zip'):   #Download dataset if does not exist
        util.http_get('https://github.com/jbrownlee/Datasets/releases/download/Flickr8k/Flickr8k_Dataset.zip', 'Flickr8k_Dataset.zip')
        util.http_get('https://github.com/jbrownlee/Datasets/releases/download/Flickr8k/Flickr8k_text.zip', 'Flickr8k_text.zip')

    for folder, file in [(img_folder, 'Flickr8k_Dataset.zip'), (caps_folder, 'Flickr8k_text.zip')]:
        with zipfile.ZipFile(file, 'r') as zf:
            for member in tqdm(zf.infolist(), desc='Extracting'):
                zf.extract(member, folder)
images = list(glob.glob('photos/Flicker8k_Dataset/*.jpg'))
``` 

Then, to perform topic modeling on multimodal data with BERTopic:

```python
from bertopic import BERTopic
from bertopic.backend import MultiModalBackend
from bertopic.representation import VisualRepresentation, KeyBERTInspired

# Image embedding model
embedding_model = MultiModalBackend('clip-ViT-B-32', batch_size=32)

# Image to text representation model
representation_model = {
    "Visual_Aspect": VisualRepresentation(image_to_text_model="nlpconnect/vit-gpt2-image-captioning", image_squares=True),
    "KeyBERT": KeyBERTInspired()
}

# Train our model with images only
topic_model = BERTopic(representation_model=representation_model, verbose=True, embedding_model=embedding_model, min_topic_size=30)
topics, probs = topic_model.fit_transform(documents=None, images=images)
```

The above demonstrates that the input were only images. These images are clustered and from those clusters a small subset of representative images are extracted. The representative images are captioned using `"nlpconnect/vit-gpt2-image-captioning"` to generate a small textual dataset over which we can run c-TF-IDF and the additional 
`KeyBERTInspired` representation model. 

## Training hyperparameters

* calculate_probabilities: False
* language: None
* low_memory: False
* min_topic_size: 30
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: True

## Framework versions

* Numpy: 1.23.5
* HDBSCAN: 0.8.29
* UMAP: 0.5.3
* Pandas: 1.5.3
* Scikit-Learn: 1.2.2
* Sentence-transformers: 2.2.2
* Transformers: 4.29.2
* Numba: 0.56.4
* Plotly: 5.14.1
* Python: 3.10.10