File size: 3,351 Bytes
3d73652 809f39f 3d73652 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
base_model:
- Ultralytics/YOLO11
pipeline_tag: object-detection
library_name: ultralytics
metrics:
- mAP50
- mAP50-95
- accuracy50
- precision
- recall
- f1
model-index:
- name: MacPaw/yolov11l-ui-elements-detection
results:
- task:
type: object-detection
metrics:
- type: accuracy
value: 0.65359
name: accuracy@0.5
- task:
type: object-detection
metrics:
- type: precision
value: 0.49055
name: precision
- task:
type: object-detection
metrics:
- type: recall
value: 0.43433
name: recall
- task:
type: object-detection
metrics:
- type: f1
value: 0.43776
name: f1
- task:
type: object-detection
metrics:
- type: map
value: 0.46644
name: mAP@0.5
- task:
type: object-detection
metrics:
- type: map
value: 0.31295
name: mAP@0.5-0.95
datasets:
- MacPaw/Screen2AX-Element
license: agpl-3.0
---
# π YOLOv11l β UI Elements Detection
This model is a fine-tuned version of [`Ultralytics/YOLO11`](https://huggingface.co/Ultralytics/YOLO11), trained to detect **UI elements** in macOS application screenshots.
It is part of the **Screen2AX** project β a research effort focused on generating accessibility metadata using computer vision.
---
## π§ Task Overview
- **Task:** Object Detection
- **Target:** Individual UI elements
- **Supported Labels:**
```
['AXButton', 'AXDisclosureTriangle', 'AXImage', 'AXLink', 'AXTextArea']
```
This model detects common interactive components typically surfaced in accessibility trees on macOS.
---
## π Dataset
- Training data: [`MacPaw/Screen2AX-Element`](https://huggingface.co/datasets/MacPaw/Screen2AX-Element)
---
## π How to Use
### π§ Install Dependencies
```bash
pip install huggingface_hub ultralytics
```
### π§ͺ Load the Model and Run Predictions
```python
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
# Download the model
model_path = hf_hub_download(
repo_id="MacPaw/yolov11l-ui-elements-detection",
filename="ui-elements-detection.pt",
)
# Load and run prediction
model = YOLO(model_path)
results = model.predict("/path/to/your/image")
# Display result
results[0].show()
```
---
## π License
This model is licensed under the **GNU Affero General Public License v3.0 (AGPL-3.0)**, as inherited from the original YOLOv11 base model.
---
## π Related Projects
- [Screen2AX Project](https://github.com/MacPaw/Screen2AX)
- [Screen2AX HuggingFace Collection](https://huggingface.co/collections/MacPaw/screen2ax-687dfe564d50f163020378b8)
- [YOLOv11l β UI Groups Detection](https://huggingface.co/MacPaw/yolov11l-ui-groups-detection)
---
## βοΈ Citation
If you use this model in your research, please cite the Screen2AX paper:
```bibtex
@misc{muryn2025screen2axvisionbasedapproachautomatic,
title={Screen2AX: Vision-Based Approach for Automatic macOS Accessibility Generation},
author={Viktor Muryn and Marta Sumyk and Mariya Hirna and Sofiya Garkot and Maksym Shamrai},
year={2025},
eprint={2507.16704},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2507.16704},
}
```
---
## π MacPaw Research
Learn more at [https://research.macpaw.com](https://research.macpaw.com) |