Object Detection
ultralytics
Eval Results
πŸ‡ͺπŸ‡Ί Region: EU
File size: 3,351 Bytes
3d73652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809f39f
 
 
 
 
 
 
 
 
3d73652
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
base_model:
- Ultralytics/YOLO11
pipeline_tag: object-detection
library_name: ultralytics
metrics:
- mAP50
- mAP50-95
- accuracy50
- precision
- recall
- f1
model-index:
- name: MacPaw/yolov11l-ui-elements-detection
  results:
  - task:
      type: object-detection
    metrics:
    - type: accuracy
      value: 0.65359
      name: accuracy@0.5
  - task:
      type: object-detection
    metrics:
    - type: precision
      value: 0.49055
      name: precision
  - task:
      type: object-detection
    metrics:
    - type: recall
      value: 0.43433
      name: recall
  - task:
      type: object-detection
    metrics:
    - type: f1
      value: 0.43776
      name: f1
  - task:
      type: object-detection
    metrics:
    - type: map
      value: 0.46644
      name: mAP@0.5
  - task:
      type: object-detection
    metrics:
    - type: map
      value: 0.31295
      name: mAP@0.5-0.95
datasets:
- MacPaw/Screen2AX-Element
license: agpl-3.0
---

# πŸ” YOLOv11l β€” UI Elements Detection

This model is a fine-tuned version of [`Ultralytics/YOLO11`](https://huggingface.co/Ultralytics/YOLO11), trained to detect **UI elements** in macOS application screenshots.

It is part of the **Screen2AX** project β€” a research effort focused on generating accessibility metadata using computer vision.

---

## 🧠 Task Overview

- **Task:** Object Detection
- **Target:** Individual UI elements
- **Supported Labels:**
  ```
  ['AXButton', 'AXDisclosureTriangle', 'AXImage', 'AXLink', 'AXTextArea']
  ```

This model detects common interactive components typically surfaced in accessibility trees on macOS.

---

## πŸ—‚ Dataset

- Training data: [`MacPaw/Screen2AX-Element`](https://huggingface.co/datasets/MacPaw/Screen2AX-Element)

---

## πŸš€ How to Use

### πŸ”§ Install Dependencies

```bash
pip install huggingface_hub ultralytics
```

### πŸ§ͺ Load the Model and Run Predictions

```python
from huggingface_hub import hf_hub_download
from ultralytics import YOLO

# Download the model
model_path = hf_hub_download(
    repo_id="MacPaw/yolov11l-ui-elements-detection",
    filename="ui-elements-detection.pt",
)

# Load and run prediction
model = YOLO(model_path)
results = model.predict("/path/to/your/image")

# Display result
results[0].show()
```

---

## πŸ“œ License

This model is licensed under the **GNU Affero General Public License v3.0 (AGPL-3.0)**, as inherited from the original YOLOv11 base model.

---

## πŸ”— Related Projects

- [Screen2AX Project](https://github.com/MacPaw/Screen2AX)
- [Screen2AX HuggingFace Collection](https://huggingface.co/collections/MacPaw/screen2ax-687dfe564d50f163020378b8)
- [YOLOv11l β€” UI Groups Detection](https://huggingface.co/MacPaw/yolov11l-ui-groups-detection)

---

## ✍️ Citation

If you use this model in your research, please cite the Screen2AX paper:

```bibtex
@misc{muryn2025screen2axvisionbasedapproachautomatic,
      title={Screen2AX: Vision-Based Approach for Automatic macOS Accessibility Generation}, 
      author={Viktor Muryn and Marta Sumyk and Mariya Hirna and Sofiya Garkot and Maksym Shamrai},
      year={2025},
      eprint={2507.16704},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2507.16704}, 
}
```

---

## 🌐 MacPaw Research

Learn more at [https://research.macpaw.com](https://research.macpaw.com)