File size: 2,068 Bytes
883d5c4
 
 
 
 
 
 
dd7c905
 
 
 
 
 
 
 
 
038f7af
dd7c905
038f7af
dd7c905
038f7af
dd7c905
 
41a2e63
dd7c905
6e76549
dd7c905
 
 
d9a9a6e
 
dd7c905
d9a9a6e
dd7c905
 
83cb1e7
dd7c905
 
 
b78f0ce
dd7c905
b9b52c2
d9a9a6e
 
 
b9b52c2
 
d9a9a6e
b9b52c2
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a9a6e
b9b52c2
9743c3d
 
 
 
dd7c905
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
MachineLearningML: Continued Pretraining Language Models on Millions of Synthetic Tabular Prediction Tasks Scales In-Context ML
license: apache-2.0
base_model:
- Qwen/Qwen2.5-7B-Instruct
---

# MachineLearningLM

## model summary

Can LLMs learn from 1,000 in-context examples?

Introducing **MachineLearningLM** 🧪📊 — a model continuously pretrained on millions of synthetic tabular ML tasks, enabling robust many-shot in-context learning.

📈 **Scales from 8 to 1,024 examples**

📈 ​**​~15% improvement​**​ on unseen tabular tasks compared to o3-mini / GPT-5-mini / Qwen-2.5-7B

🌲 ​**​Random-Forest–level robustness​**​
 
🧠 ​**​MMLU score: 75.4%​**​

📄 Read the paper:  https://huggingface.co/papers/2509.06806

   GitHub: https://github.com/HaoAreYuDong/MachineLearningLM

## evaluation and validation

We have developed an automated evaluation framework — simply configure the parameters to easily perform validation and evaluation. 
**The code is now open-sourced at our GitHub.**

**Quick Start**

```bash
pip install -r requirements.txt
python ./src/evaluation/model_pred/dl_model_pred.py \
  --input_dir ./demo_input.jsonl \
  --output_dir ./demo_output.jsonl \
  --model_name MachineLearningLM/MachineLearningLM-7B-v1
```
**pipeline**
```bash
# modify the evaluate_parameters.sh file
source evaluate_parameters.sh

# Option 1  End-to-End Pipeline
./scripts/evaluate_pipeline.sh

# Option 2  Parallel Processing
./scripts/multi_process/data_prep.sh
./scripts/multi_process/prompt_gen.sh  # For deep learning only
./scripts/multi_process/model_pred.sh
./scripts/multi_process/evaluation.sh
./scripts/multi_process/report.sh

# Option3   Sequential Processing
./scripts/single_process/data_prep.sh
./scripts/single_process/prompt_gen.sh  # For deep learning only
./scripts/single_process/model_pred.sh
./scripts/single_process/evaluation.sh
./scripts/single_process/report.sh
```

**Quants**

https://huggingface.co/mradermacher/MachineLearningLM-7B-v1-GGUF

For more usage details, please visit our GitHub.