import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Dataset from torch.optim.lr_scheduler import ReduceLROnPlateau import numpy as np from PIL import Image import random import torch.nn.functional as F class CustomDataset(Dataset): def __init__(self, red_dir, green_dir, blue_dir, nir_dir, mask_dir, pytorch=True): super().__init__() self.red_dir = red_dir self.green_dir = green_dir self.blue_dir = blue_dir self.nir_dir = nir_dir self.mask_dir = mask_dir red_files = [f for f in self.red_dir.iterdir() if f.is_file()] self.files = [self.combine_files(f) for f in red_files] self.pytorch = pytorch def combine_files(self, red_files: Path): base_name = red_files.name files = { 'red': red_files, 'green': self.green_dir / base_name.replace('red', 'green'), 'blue': self.blue_dir / base_name.replace('red', 'blue'), 'nir': self.nir_dir / base_name.replace('red', 'nir'), 'mask': self.mask_dir / base_name.replace('red', 'gt'), } for key, path in files.items(): if not path.exists(): raise FileNotFoundError(f'Missing file: {path} for {red_files}') return files def __len__(self): return len(self.files) def open_as_array(self, idx, invert=False, nir_included=False): rgb = np.stack([ np.array(Image.open(self.files[idx]['red'])), np.array(Image.open(self.files[idx]['green'])), np.array(Image.open(self.files[idx]['blue'])) ], axis=2) if nir_included: nir = np.array(Image.open(self.files[idx]['nir'])) nir = np.expand_dims(nir, 2) rgb = np.concatenate([rgb, nir], axis=2) if invert: rgb = rgb.transpose((2, 0, 1)) raw_rgb = (rgb / np.iinfo(rgb.dtype).max) return raw_rgb def open_mask(self,idx, expand_dims=True): raw_mask = np.array(Image.open(self.files[idx]['mask'])) raw_mask = np.where(raw_mask == 255, 1, 0) # Transform the mask into binary array where pixels with value 256(white) become 1(clouds), pixels with 0 or anything else becomes 0(not clouds) return np.expand_dims(raw_mask, 0) if expand_dims else raw_mask def __getitem__(self, idx): X = torch.tensor(self.open_as_array(idx, invert=True, nir_included=True), dtype=torch.float32) y = torch.tensor(self.open_mask(idx, expand_dims=True), dtype=torch.float32) return X, y class doubleConv(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.double_conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) def forward(self, x): return self.double_conv(x) class downSample(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.conv = doubleConv(in_channels, out_channels) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) def forward(self, x): down = self.conv(x) p = self.pool(down) return down, p class upSample(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.up = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2) self.conv = doubleConv(out_channels * 2, out_channels) def forward(self, x1, x2): x1 = self.up(x1) x = torch.cat([x1, x2], 1) return self.conv(x) class SpatialAttention(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=3, padding=1) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_pooling = torch.mean(x, dim=1, keepdim=True) max_pooling = torch.max(x, dim=1, keepdim=True)[0] # return on max values and not their indices concat = torch.cat([avg_pooling, max_pooling], dim=1) attention = self.conv(concat) attention = self.sigmoid(attention) output = x * attention return output class UNet(nn.Module): def __init__(self, in_channels, num_classes): super().__init__() self.down_conv1 = downSample(in_channels, 32) self.down_conv2 = downSample(32, 64) self.down_conv3 = downSample(64, 128) self.bottleneck = doubleConv(128, 256) self.spatial_attention = SpatialAttention() self.up_conv1 = upSample(256, 128) self.up_conv2 = upSample(128, 64) self.up_conv3 = upSample(64, 32) self.out = nn.Conv2d(in_channels=32 , out_channels=num_classes, kernel_size=1) def forward(self, x): down1, p1 = self.down_conv1(x) down2, p2 = self.down_conv2(p1) down3, p3 = self.down_conv3(p2) b = self.bottleneck(p3) b = self.spatial_attention(b) up1 = self.up_conv1(b, down3) up2 = self.up_conv2(up1, down2) up3 = self.up_conv3(up2, down1) output = self.out(up3) return output def acc_fn(predb, yb): preds = torch.sigmoid(predb) # Convert logits to probabilities preds = (preds > 0.5).float() # Threshold at 0.5 return (preds == yb).float().mean() # Compare with ground truth def calculate_metrics(y_true, y_pred): TP = torch.sum((y_true == 1) & (y_pred == 1)).float() TN = torch.sum((y_true == 0) & (y_pred == 0)).float() FP = torch.sum((y_true == 0) & (y_pred == 1)).float() FN = torch.sum((y_true == 1) & (y_pred == 0)).float() jaccard = TP / (TP + FN + FP + 1e-10) precision = TP / (TP + FP + 1e-10) recall = TP / (TP + FN + 1e-10) specificity = TN / (TN + FP + 1e-10) overall_acc = (TP + TN) / (TP + TN + FP + FN + 1e-10) return { "Jaccard index": jaccard.item(), "Precision": precision.item(), "Recall": recall.item(), "Specificity": specificity.item(), "Overall Accuracy": overall_acc.item() }