File size: 10,839 Bytes
1fea0a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import torch
import math
import torch.nn as nn
import warnings
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
try:
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
except:
return tensor
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def index_points(points, idx):
"""Sample features following the index.
Returns:
new_points:, indexed points data, [B, S, C]
Args:
points: input points data, [B, N, C]
idx: sample index data, [B, S]
"""
device = points.device
B = points.shape[0]
view_shape = list(idx.shape)
view_shape[1:] = [1] * (len(view_shape) - 1)
repeat_shape = list(idx.shape)
repeat_shape[0] = 1
batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
new_points = points[batch_indices, idx, :]
return new_points
def cluster_dpc_knn(token_dict, cluster_num, k=5, token_mask=None):
"""Cluster tokens with DPC-KNN algorithm.
Return:
idx_cluster (Tensor[B, N]): cluster index of each token.
cluster_num (int): actual cluster number. The same with
input cluster number
Args:
token_dict (dict): dict for token information
cluster_num (int): cluster number
k (int): number of the nearest neighbor used for local density.
token_mask (Tensor[B, N]): mask indicate the whether the token is
padded empty token. Non-zero value means the token is meaningful,
zero value means the token is an empty token. If set to None, all
tokens are regarded as meaningful.
"""
with torch.no_grad():
x = token_dict["x"]
B, N, C = x.shape
dist_matrix = torch.cdist(x.float(), x.float()) / (C ** 0.5)
if token_mask is not None:
token_mask = token_mask > 0
# in order to not affect the local density, the distance between empty tokens
# and any other tokens should be the maximal distance.
dist_matrix = dist_matrix * token_mask[:, None, :] + \
(dist_matrix.max() + 1) * (~token_mask[:, None, :])
# get local density
dist_nearest, index_nearest = torch.topk(dist_matrix, k=k, dim=-1, largest=False)
density = (-(dist_nearest ** 2).mean(dim=-1)).exp()
# add a little noise to ensure no tokens have the same density.
density = density + torch.rand(
density.shape, device=density.device, dtype=density.dtype) * 1e-6
if token_mask is not None:
# the density of empty token should be 0
density = density * token_mask
# get distance indicator
mask = density[:, None, :] > density[:, :, None]
mask = mask.type(x.dtype)
dist_max = dist_matrix.flatten(1).max(dim=-1)[0][:, None, None]
dist, index_parent = (dist_matrix * mask + dist_max * (1 - mask)).min(dim=-1)
# select clustering center according to score
score = dist * density
_, index_down = torch.topk(score, k=cluster_num, dim=-1)
# assign tokens to the nearest center
dist_matrix = index_points(dist_matrix, index_down)
idx_cluster = dist_matrix.argmin(dim=1)
# make sure cluster center merge to itself
idx_batch = torch.arange(B, device=x.device)[:, None].expand(B, cluster_num)
idx_tmp = torch.arange(cluster_num, device=x.device)[None, :].expand(B, cluster_num)
idx_cluster[idx_batch.reshape(-1), index_down.reshape(-1)] = idx_tmp.reshape(-1)
return idx_cluster, cluster_num
def merge_tokens(token_dict, idx_cluster, cluster_num, token_weight=None):
"""Merge tokens in the same cluster to a single cluster.
Implemented by torch.index_add(). Flops: B*N*(C+2)
Return:
out_dict (dict): dict for output token information
Args:
token_dict (dict): dict for input token information
idx_cluster (Tensor[B, N]): cluster index of each token.
cluster_num (int): cluster number
token_weight (Tensor[B, N, 1]): weight for each token.
"""
x = token_dict['x']
idx_token = token_dict['idx_token']
agg_weight = token_dict['agg_weight']
B, N, C = x.shape
if token_weight is None:
token_weight = x.new_ones(B, N, 1)
idx_batch = torch.arange(B, device=x.device)[:, None]
idx = idx_cluster + idx_batch * cluster_num
all_weight = token_weight.new_zeros(B * cluster_num, 1)
all_weight.index_add_(dim=0, index=idx.reshape(B * N),
source=token_weight.reshape(B * N, 1))
all_weight = all_weight + 1e-6
norm_weight = token_weight / all_weight[idx]
# average token features
x_merged = x.new_zeros(B * cluster_num, C)
source = x * norm_weight
x_merged.index_add_(dim=0, index=idx.reshape(B * N),
source=source.reshape(B * N, C).type(x.dtype))
x_merged = x_merged.reshape(B, cluster_num, C)
idx_token_new = index_points(idx_cluster[..., None], idx_token).squeeze(-1)
weight_t = index_points(norm_weight, idx_token)
agg_weight_new = agg_weight * weight_t
agg_weight_new / agg_weight_new.max(dim=1, keepdim=True)[0]
out_dict = {}
out_dict['x'] = x_merged
out_dict['token_num'] = cluster_num
out_dict['idx_token'] = idx_token_new
out_dict['agg_weight'] = agg_weight_new
out_dict['mask'] = None
return out_dict
class CTM(nn.Module):
def __init__(self, sample_ratio, embed_dim, dim_out, k=5):
super().__init__()
self.sample_ratio = sample_ratio
self.dim_out = dim_out
self.k = k
def forward(self, token_dict, sample_ratio=None):
x = token_dict["x"]
B, N, C = x.shape
token_weight = x.new_ones(B, N)
if token_dict["mask"] is not None:
token_weight.masked_fill_((1 - token_dict["mask"]).to(torch.bool), float("-inf"))
token_weight = token_weight.unsqueeze(2)
token_dict['x'] = x
if sample_ratio is not None:
cluster_num = max(math.ceil(N * sample_ratio), 1)
elif self.sample_ratio > 1:
cluster_num = max(math.ceil(self.sample_ratio), 1)
else:
cluster_num = max(math.ceil(N * self.sample_ratio), 1)
k = min(3, max(cluster_num//2, 1)) if self.k > cluster_num else self.k
idx_cluster, cluster_num = cluster_dpc_knn(
token_dict, cluster_num, k, token_mask=token_dict["mask"])
down_dict = merge_tokens(token_dict, idx_cluster, cluster_num, token_weight)
return down_dict, token_dict
class TCBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, use_sr_layer=False):
super().__init__()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, inputs):
if isinstance(inputs, tuple) or isinstance(inputs, list):
q_dict, kv_dict = inputs
else:
q_dict, kv_dict = inputs, None
x = q_dict['x']
return q_dict |