File size: 10,839 Bytes
1fea0a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import torch
import math
import torch.nn as nn
import warnings


def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
                      "The distribution of values may be incorrect.",
                      stacklevel=2)

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    # type: (Tensor, float, float, float, float) -> Tensor
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.
    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value
    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    """
    try:
        return _no_grad_trunc_normal_(tensor, mean, std, a, b)
    except:
        return tensor


def drop_path(x, drop_prob: float = 0., training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


def index_points(points, idx):
    """Sample features following the index.
    Returns:
        new_points:, indexed points data, [B, S, C]

    Args:
        points: input points data, [B, N, C]
        idx: sample index data, [B, S]
    """
    device = points.device
    B = points.shape[0]
    view_shape = list(idx.shape)
    view_shape[1:] = [1] * (len(view_shape) - 1)
    repeat_shape = list(idx.shape)
    repeat_shape[0] = 1
    batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
    new_points = points[batch_indices, idx, :]
    return new_points


def cluster_dpc_knn(token_dict, cluster_num, k=5, token_mask=None):
    """Cluster tokens with DPC-KNN algorithm.
    Return:
        idx_cluster (Tensor[B, N]): cluster index of each token.
        cluster_num (int): actual cluster number. The same with
            input cluster number
    Args:
        token_dict (dict): dict for token information
        cluster_num (int): cluster number
        k (int): number of the nearest neighbor used for local density.
        token_mask (Tensor[B, N]): mask indicate the whether the token is
            padded empty token. Non-zero value means the token is meaningful,
            zero value means the token is an empty token. If set to None, all
            tokens are regarded as meaningful.
    """
    with torch.no_grad():
        x = token_dict["x"]
        B, N, C = x.shape

        dist_matrix = torch.cdist(x.float(), x.float()) / (C ** 0.5)

        if token_mask is not None:
            token_mask = token_mask > 0
            # in order to not affect the local density, the distance between empty tokens
            # and any other tokens should be the maximal distance.
            dist_matrix = dist_matrix * token_mask[:, None, :] + \
                          (dist_matrix.max() + 1) * (~token_mask[:, None, :])

        # get local density

        dist_nearest, index_nearest = torch.topk(dist_matrix, k=k, dim=-1, largest=False)
        density = (-(dist_nearest ** 2).mean(dim=-1)).exp()
        # add a little noise to ensure no tokens have the same density.
        density = density + torch.rand(
            density.shape, device=density.device, dtype=density.dtype) * 1e-6

        if token_mask is not None:
            # the density of empty token should be 0
            density = density * token_mask

        # get distance indicator
        mask = density[:, None, :] > density[:, :, None]
        mask = mask.type(x.dtype)
        dist_max = dist_matrix.flatten(1).max(dim=-1)[0][:, None, None]
        dist, index_parent = (dist_matrix * mask + dist_max * (1 - mask)).min(dim=-1)

        # select clustering center according to score
        score = dist * density
        _, index_down = torch.topk(score, k=cluster_num, dim=-1)

        # assign tokens to the nearest center
        dist_matrix = index_points(dist_matrix, index_down)

        idx_cluster = dist_matrix.argmin(dim=1)

        # make sure cluster center merge to itself
        idx_batch = torch.arange(B, device=x.device)[:, None].expand(B, cluster_num)
        idx_tmp = torch.arange(cluster_num, device=x.device)[None, :].expand(B, cluster_num)
        idx_cluster[idx_batch.reshape(-1), index_down.reshape(-1)] = idx_tmp.reshape(-1)

    return idx_cluster, cluster_num


def merge_tokens(token_dict, idx_cluster, cluster_num, token_weight=None):
    """Merge tokens in the same cluster to a single cluster.
    Implemented by torch.index_add(). Flops: B*N*(C+2)
    Return:
        out_dict (dict): dict for output token information

    Args:
        token_dict (dict): dict for input token information
        idx_cluster (Tensor[B, N]): cluster index of each token.
        cluster_num (int): cluster number
        token_weight (Tensor[B, N, 1]): weight for each token.
    """

    x = token_dict['x']
    idx_token = token_dict['idx_token']
    agg_weight = token_dict['agg_weight']

    B, N, C = x.shape
    if token_weight is None:
        token_weight = x.new_ones(B, N, 1)

    idx_batch = torch.arange(B, device=x.device)[:, None]
    idx = idx_cluster + idx_batch * cluster_num

    all_weight = token_weight.new_zeros(B * cluster_num, 1)
    all_weight.index_add_(dim=0, index=idx.reshape(B * N),
                          source=token_weight.reshape(B * N, 1))
    all_weight = all_weight + 1e-6
    norm_weight = token_weight / all_weight[idx]

    # average token features
    x_merged = x.new_zeros(B * cluster_num, C)
    source = x * norm_weight

    x_merged.index_add_(dim=0, index=idx.reshape(B * N),
                        source=source.reshape(B * N, C).type(x.dtype))
    x_merged = x_merged.reshape(B, cluster_num, C)

    idx_token_new = index_points(idx_cluster[..., None], idx_token).squeeze(-1)
    weight_t = index_points(norm_weight, idx_token)
    agg_weight_new = agg_weight * weight_t
    agg_weight_new / agg_weight_new.max(dim=1, keepdim=True)[0]

    out_dict = {}
    out_dict['x'] = x_merged
    out_dict['token_num'] = cluster_num
    out_dict['idx_token'] = idx_token_new
    out_dict['agg_weight'] = agg_weight_new
    out_dict['mask'] = None
    return out_dict


class CTM(nn.Module):
    def __init__(self, sample_ratio, embed_dim, dim_out, k=5):
        super().__init__()
        self.sample_ratio = sample_ratio
        self.dim_out = dim_out
        self.k = k

    def forward(self, token_dict, sample_ratio=None):
        x = token_dict["x"]
        B, N, C = x.shape

        token_weight = x.new_ones(B, N)

        if token_dict["mask"] is not None:
            token_weight.masked_fill_((1 - token_dict["mask"]).to(torch.bool), float("-inf"))
        token_weight = token_weight.unsqueeze(2)
        token_dict['x'] = x

        if sample_ratio is not None:
            cluster_num = max(math.ceil(N * sample_ratio), 1)
        elif self.sample_ratio > 1:
            cluster_num = max(math.ceil(self.sample_ratio), 1)
        else:
            cluster_num = max(math.ceil(N * self.sample_ratio), 1)

        k = min(3, max(cluster_num//2, 1)) if self.k > cluster_num else self.k
        idx_cluster, cluster_num = cluster_dpc_knn(
            token_dict, cluster_num, k, token_mask=token_dict["mask"])

        down_dict = merge_tokens(token_dict, idx_cluster, cluster_num, token_weight)
        return down_dict, token_dict


class TCBlock(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, use_sr_layer=False):
        super().__init__()
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, inputs):
        if isinstance(inputs, tuple) or isinstance(inputs, list):
            q_dict, kv_dict = inputs
        else:
            q_dict, kv_dict = inputs, None

        x = q_dict['x']
        return q_dict