File size: 13,631 Bytes
a738d7a
 
 
 
 
 
765e39a
a738d7a
 
 
765e39a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a738d7a
765e39a
 
 
 
 
 
a738d7a
765e39a
 
a738d7a
765e39a
 
 
a738d7a
765e39a
 
 
 
 
 
 
 
a738d7a
765e39a
a738d7a
765e39a
 
a738d7a
 
765e39a
 
a738d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
765e39a
a738d7a
765e39a
a738d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
765e39a
a738d7a
 
765e39a
 
 
 
a738d7a
765e39a
 
 
 
 
a738d7a
 
 
 
 
 
 
 
 
 
 
765e39a
 
 
a738d7a
 
 
 
 
 
 
 
 
 
765e39a
 
a738d7a
 
 
 
 
 
 
 
 
 
 
765e39a
a738d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
765e39a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a738d7a
 
 
 
 
765e39a
a738d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:268861
- loss:MultipleNegativesRankingLoss
base_model: Qwen/Qwen3-0.6B-Base
widget:
- source_sentence: 'There are seven thieves. They stole diamonds from a diamond merchant
    and ran away. While running, night sets in and they decide to rest in the jungle.

    When everybody was sleeping, two of them woke up and decided to divide the diamonds
    equally among themselves. But when they divided the diamonds equally, one diamond
    is left.

    So they woke up the 3rd thief and tried to divide the diamonds equally again but
    still one diamond was left. Then they woke up the 4th thief to divide the diamonds
    equally again, and again one diamond was left. This happened with the 5th and
    6th thief – one diamond was still left.

    Finally, they woke up the 7th thief and this time the diamonds were divided equally.

    How many diamonds did they steal in total?'
  sentences:
  - ''''
  - ''''
  - e
- source_sentence: 'praveen starts business with rs . 3220 and after 5 months , hari
    joins with praveen as his partner . after a year , the profit is divided in the
    ratio 2 : 3 . what is hari ’ s contribution in the capital ?'
  sentences:
  - s
  - '5'
  - '['
- source_sentence: 'Which of the following is material of choice in class V

    cavity with abfraction?'
  sentences:
  - '['
  - t
  - G
- source_sentence: A right circular cylinder has a height of 25 and a radius of 5.
    A rectangular solid with a height of 15 and a square base, is placed in the cylinder
    such that each of the corners of the solid is tangent to the cylinder wall. Liquid
    is then poured into the cylinder such that it reaches the rim. What is the volume
    of the liquid?
  sentences:
  - '5'
  - '['
  - '2'
- source_sentence: Cerebral angiography was performed by -
  sentences:
  - S
  - t
  - '2'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer based on Qwen/Qwen3-0.6B-Base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) <!-- at revision 11214f7f3465775dcce23c3752ecea5a42ee0ddc -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: Qwen3Model 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Cerebral angiography was performed by -',
    'S',
    '2',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 268,861 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                      |
  |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                          |
  | details | <ul><li>min: 5 tokens</li><li>mean: 48.3 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0 tokens</li><li>mean: 0.97 tokens</li><li>max: 1 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                                                                    | sentence_1     |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>A 1200 m long train crosses a tree in 120 sec, how much time will I take to pass a platform 1100 m long?</code>                                         | <code>'</code> |
  | <code>What is the opposite of rarefaction zones, where air molecules in waves are loosely packed?</code>                                                      | <code>[</code> |
  | <code>if w is 40 percent less than e , e is 40 percent less than y , and z is 46 percent less than y , then z is greater than w by what percent of w ?</code> | <code>%</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 4
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step  | Training Loss |
|:------:|:-----:|:-------------:|
| 0.1190 | 500   | 4.0939        |
| 0.2380 | 1000  | 3.7716        |
| 0.3571 | 1500  | 0.0           |
| 0.4761 | 2000  | 0.0           |
| 0.5951 | 2500  | 0.0           |
| 0.7141 | 3000  | 0.0           |
| 0.8331 | 3500  | 0.0           |
| 0.9522 | 4000  | 0.0           |
| 1.0712 | 4500  | 0.0           |
| 1.1902 | 5000  | 0.0           |
| 1.3092 | 5500  | 0.0           |
| 1.4282 | 6000  | 0.0           |
| 1.5473 | 6500  | 0.0           |
| 1.6663 | 7000  | 0.0           |
| 1.7853 | 7500  | 0.0           |
| 1.9043 | 8000  | 0.0           |
| 2.0233 | 8500  | 0.0           |
| 2.1423 | 9000  | 0.0           |
| 2.2614 | 9500  | 0.0           |
| 2.3804 | 10000 | 0.0           |
| 2.4994 | 10500 | 0.0           |
| 2.6184 | 11000 | 0.0           |
| 2.7374 | 11500 | 0.0           |
| 2.8565 | 12000 | 0.0           |
| 2.9755 | 12500 | 0.0           |
| 3.0945 | 13000 | 0.0           |
| 3.2135 | 13500 | 0.0           |
| 3.3325 | 14000 | 0.0           |
| 3.4516 | 14500 | 0.0           |
| 3.5706 | 15000 | 0.0           |
| 3.6896 | 15500 | 0.0           |
| 3.8086 | 16000 | 0.0           |
| 3.9276 | 16500 | 0.0           |


### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->