File size: 3,633 Bytes
e8d26db
202e88e
fdc8f79
 
 
 
 
e8d26db
fdc8f79
 
 
 
 
 
e8d26db
fdc8f79
202e88e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66f0378
fdc8f79
202e88e
 
fdc8f79
66f0378
 
fdc8f79
 
 
 
 
 
66f0378
fdc8f79
 
 
 
 
 
 
 
66f0378
 
202e88e
66f0378
202e88e
 
66f0378
202e88e
66f0378
 
fdc8f79
 
 
 
 
 
 
 
 
 
 
66f0378
 
 
 
202e88e
66f0378
fdc8f79
 
 
 
 
66f0378
 
202e88e
66f0378
202e88e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
license: mit
language:
- en
base_model:
- TinyLlama/TinyLlama-1.1B-Chat-v1.0
- TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
library_name: transformers
tags:
- mergekit
- merged-model
- tinyllama
- stablelm
- language-model
---

# πŸš€ TinyStable-Hybrid-1.6B: Merging Efficiency & Power

## πŸ“Œ Overview
**TinyStable-Hybrid-1.6B** is an **experimental hybrid language model** that merges the capabilities of TinyLlama and StableLM. Built using **MergeKit**, this model is designed to balance performance and efficiency while offering strong text generation capabilities.

πŸ”— **Created by**: Matteo Khan  
πŸŽ“ **Affiliation**: Apprentice at TW3 Partners (Generative AI Research)  
πŸ“ **License**: MIT  

πŸ”— [Connect with me on LinkedIn](https://www.linkedin.com/in/matteo-khan-a10309263/)  
πŸ” [Model on Hugging Face](https://huggingface.co/MatteoKhan/TinyStable-Hybrid-1.6B)  

## 🧠 Model Details
- **Model Type**: Hybrid Language Model (Merged)
- **Parent Models**:
  - [TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
  - [TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T)
- **Merging Technique**: Linear Merge (MergeKit)

## 🎯 Intended Use
This model is primarily intended for **research and experimentation** in hybrid model optimization. Potential use cases include:
- βœ… Text Generation
- βœ… Conversational AI
- βœ… Creative Writing Assistance
- βœ… Exploration of Model Merging Effects

## ⚠️ Limitations & Considerations
While **TinyStable-Hybrid-1.6B** offers enhanced capabilities, it also inherits certain limitations from its parent models:
- ❌ May generate **inaccurate or misleading** information
- ⚠️ Potential for **biased, offensive, or harmful** content
- πŸ”„ Merging may introduce **unpredictable behaviors**
- πŸ“‰ Performance may **vary across different tasks**

## πŸ”¬ Merging Process & Configuration
This is **not a newly trained model**, but rather a merge of existing models using the following configuration:

```yaml
merge_method: linear
dtype: float16
models:
  - model: "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
    parameters:
      t: 1.0
      weight: 0.5
  - model: "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
    parameters:
      t: 1.0
      weight: 0.5
parameters:
  normalize: true
  int8_mask: false
layers:
  - pattern: "model.*"
```

πŸ“Š **No formal evaluation** has been conducted yet. Users are encouraged to **benchmark and share feedback**!

## 🌍 Environmental Impact
By utilizing **model merging** rather than training from scratch, **TinyStable-Hybrid-1.6B** significantly reduces computational and environmental costs.

## πŸš€ How to Use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "MatteoKhan/TinyStable-Hybrid-1.6B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Example usage
prompt = "Write a short poem about artificial intelligence."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
**πŸ“ TinyLlama**  
```bibtex
@misc{zhang2024tinyllama,
      title={TinyLlama: An Open-Source Small Language Model},
      author={Jiayu Zhang and others},
      year={2024},
      eprint={2401.02385},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

πŸ“© **Feedback & Contact**: Reach out via [Hugging Face](https://huggingface.co/MatteoKhan).

πŸŽ‰ **Happy Experimenting!** πŸš€