File size: 25,436 Bytes
eddfef4 ee119b5 eddfef4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
import torch
from torch import nn
from .LMConfig import LMConfig
import math
import torch.nn.functional as F
from typing import Optional
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(dim))
self.eps = eps
def _norm(self, x):
return x * torch.rsqrt(self.eps + x.pow(2).mean(-1, keepdim = True))
def forward(self, x):
x = self._norm(x.float()).type_as(x) # 用 float 提高精确度,防止溢出
x = x * self.weight
return x
def repeat_kv(x: torch.Tensor, n_rep: int):
'''
x 是 key 或者 value ,大小是 (batch_size, seq_len, kv_heads, head_dim)
要把它复制 n_rep 遍,变成 (batch_size, seq_len, kv_heads * n_rep, head_dim)
'''
if n_rep == 1:
return x
else:
bs, seq_len, kv_heads, head_dim = x.shape
return x[:,:,:,None,:].expand(bs, seq_len, kv_heads, n_rep, head_dim).reshape(bs, seq_len, kv_heads * n_rep, head_dim)
# expand 的用法:只能拓展大小为1的维度,或者增加维度。并且expand并没有实际占用内存,它只是用广播而已
# 这句不能用 view,要不然报错:
# RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
def get_rotation(dim: int, seq_len: int, base: float = 10000.0):
'''
获得旋转矩阵,就是一个(seq_len, dim // 2)大小的矩阵W。
W[a][b] = cos(a*θ_b) + i*sin(a*θ_b) ,实际上就是模长为 1 ,旋转角度为 a*θ_b 的虚数向量
但是要注意,这里的 dim 并不是模型的大小,而是在每个注意力头里的 tensor 的大小。也就是 args.dim // args.n_heads
'''
angles = 1.0 / (base ** (torch.arange(0, dim, 2)[: dim // 2].float() / dim))
seq = torch.arange(0, seq_len, device = angles.device)
angle_matrix = torch.outer(seq, angles).float()
weight = torch.polar(torch.ones_like(angle_matrix), angle_matrix)
return weight
def position_encoding(xq, xk, weight):
# 先把 xq 和 xk 转化成虚数
# xq.shape = [bsz, seq_len, n_heads, head_dim]
# xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # reshape 能处理内存不连续情况,view 不行
# xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
xq = xq.float()
xk = xk.float()
xq = torch.view_as_complex(xq.reshape(*xq.shape[:-1], -1, 2)) # reshape 能处理内存不连续情况,view 不行
xk = torch.view_as_complex(xk.reshape(*xk.shape[:-1], -1, 2))
# 相乘,然后转化成实数
# xq_ 变成[bsz, seq_len, n_heads, head_dim // 2],把weight变成[1, seq_len, 1, head_dim // 2]
# xq_pos = torch.view_as_real(weight[None, :, None, :] * xq_).flatten(3)
# xk_pos = torch.view_as_real(weight[None, :, None, :] * xk_).flatten(3)
xq = torch.view_as_real(weight[None, :, None, :] * xq).flatten(3)
xk = torch.view_as_real(weight[None, :, None, :] * xk).flatten(3)
# flatten(3)是把第三维度后面的内容全部合并成一维,因为虚数变实数之后就变成(b, s, n_h, h // 2, 2)了
# assert xq_pos.shape == xq.shape
# assert xk_pos.shape == xk.shape
return xq, xk
class Attention(nn.Module):
def __init__(self, args: LMConfig) -> None:
super().__init__()
self.dim = args.dim # 模型维度 512
self.n_heads = args.n_heads # 注意力头数 16
self.n_kv_heads = args.n_kv_heads # kv 头数 8
assert self.n_heads % self.n_kv_heads == 0
self.n_rep = self.n_heads // self.n_kv_heads # kv 重复次数
assert self.dim % self.n_heads == 0
self.head_dim = self.dim // self.n_heads # 每个注意力头里面的张量维度
self.wq = nn.Linear(self.dim, self.n_heads * self.head_dim, bias = False)
self.wk = nn.Linear(self.dim, self.n_kv_heads * self.head_dim, bias = False)
self.wv = nn.Linear(self.dim, self.n_kv_heads * self.head_dim, bias = False)
self.wo = nn.Linear(self.n_heads * self.head_dim, self.dim, bias = False)
# self.attn_dropout = nn.Dropout(args.dropout) # 注意力 dropout
self.resid_dropout = nn.Dropout(args.dropout) # 残差 dropout
self.dropout = args.dropout # 给 flash attn 用的
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
# 判断是否使用 Flash Attention。后者令 is_causal=True 可以实现掩码注意力功能。
if not self.flash:
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
mask = torch.triu(mask, diagonal = 1) # upper triangular 和 lower triangular
self.register_buffer("mask", mask) # 这样 mask 就不会反向更新了
# kv 缓存。因为测试的时候参数不再更新,所以每个 token 生成的 xk 和 xv 都不变。因此可以直接复用
self.k_cache, self.v_cache = None, None
def forward(self, x: torch.Tensor, weight: torch.Tensor, use_kv_cache = False):
# x 是(seq_len, dim)的输入,weight是旋转矩阵
# print("进来了 FORWARD!!")
bsz, seq_len, _ = x.shape
# print("进来了 FORWARD!!")
if use_kv_cache and self.eval(): # 评估模式,就是测试阶段的意思
# if self.k_cache is None or self.k_cache.shape[1] == x.shape[1] - 1: # x 的词数量比 k 缓存多一个
if self.k_cache is None or self.k_cache.shape[1] != x.shape[1] - 1:
# print("缓冲是 None!")
# self.k_cache.shape[1] != x.shape[1] - 1 这一句不能不写!
# 因为你每处理一段新的上下文,是不会创建新模型对象的。换言之只用一个模型,处理若干个问题
# 那么当你切换到新的上下文的时候,你的 kv 缓冲按理必须要清空。
# 那么怎么判断你是否切换了新的上下文呢?就用 self.k_cache.shape[1] != x.shape[1] - 1 方法
# 否则你会出现 reshape 大小不匹配的问题!
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
else:
token = x[:, -1:, :]
# print("1 号concat:")
xq = torch.concat((torch.zeros_like(x[:, : -1, :]), self.wq(token)), dim = 1)
# 只更新最后一个 token 的值,因为后面要有残差,所以相当于对于前面的词向量什么都不做
# print("2 号concat:")
xk = torch.concat((self.k_cache, self.wk(token)), dim = 1)
# print("3 号concat:")
xv = torch.concat((self.v_cache, self.wv(token)), dim = 1)
# 复用之前的 xw 和 xv
self.k_cache, self.v_cache = xk, xv
else:
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.reshape(bsz, seq_len, self.n_heads, self.head_dim)
xk = xk.reshape(bsz, seq_len, self.n_kv_heads, self.head_dim)
xv = xv.reshape(bsz, seq_len, self.n_kv_heads, self.head_dim)
xq, xk = position_encoding(xq, xk, weight) # 给 q 和 k 加位置编码
xk, xv = repeat_kv(xk, self.n_rep), repeat_kv(xv, self.n_rep) # 把 k 和 v 重复 n_rep 遍
xq = xq.transpose(1, 2)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
if self.flash: # 直接算出 softmax(...) @ xv
# output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask = None,
# dropout_p = self.dropout if self.training else 0.0,
# is_causal = True) # is_causal = True 表示使用掩码
x = F.scaled_dot_product_attention(xq, xk, xv, attn_mask = None,
dropout_p = self.dropout if self.training else 0.0,
is_causal = True) # is_causal = True 表示使用掩码
# self.training 用来指示模型当前是否处于训练模式
else:
# scores = xq @ xk.transpose(2, 3) / math.sqrt(self.head_dim) # (bs, n_head, seq_len, seq_len)
# assert hasattr(self, "mask")
# scores = scores + self.mask[:, :, : seq_len, : seq_len] # 掩码,把后文盖住
# output = F.softmax(scores, dim = -1) @ xv # (bs, n_head, seq_len, head_dim)
x = xq @ xk.transpose(2, 3) / math.sqrt(self.head_dim) # (bs, n_head, seq_len, seq_len)
assert hasattr(self, "mask")
x = x + self.mask[:, :, : seq_len, : seq_len] # 掩码,把后文盖住
x = F.softmax(x, dim = -1) @ xv # (bs, n_head, seq_len, head_dim)
x = x.transpose(1, 2).contiguous().view(bsz, seq_len, -1) # (bs, seq_len, dim)
x = self.resid_dropout(self.wo(x))
return x
class FeedForward(nn.Module):
def __init__(self, dim: int, hidden_dim: int, multi: int, dropout: float) -> None:
# hidden_dim 默认是 None
# multi 隐藏层维度的倍数,默认为 64
# dropout 默认是 0.0
super().__init__()
if hidden_dim is None:
hidden_dim = 4 * dim
hidden_dim = int(2 * hidden_dim / 3)
hidden_dim = multi * ((hidden_dim + multi - 1) // multi) # 没理解这么做的目的
# 最后算出来是 1408
self.w1 = nn.Linear(dim, hidden_dim, bias = False)
self.w2 = nn.Linear(dim, hidden_dim, bias = False)
self.w3 = nn.Linear(hidden_dim, dim, bias = False)
self.dropout = nn.Dropout(dropout)
def forward(self, x: torch.Tensor):
# return self.dropout(self.w3(F.silu(self.w1(x)) * self.w2(x)))
# return self.w3(F.silu(self.w1(x)) * self.w2(x))
x_2 = self.w2(x)
x = self.w1(x)
x = F.silu(x)
x = x * x_2
x = self.w3(x)
return x
class MoEGate(nn.Module):
def __init__(self, args: LMConfig) -> None:
super().__init__()
self.topk = args.num_experts_per_tok # top-k 里面的 k ,也就是选择的专家个数
self.gating_dim = args.dim # 门控维度,跟模型大小是一样的
self.n_routed_experts = args.num_experts_per_tok # 专家个数
self.scoring_func = args.scoring_func # 评分函数
self.norm_topk_prob = args.norm_topk_prob # 标准化 top-k 概率
self.alpha = args.aux_loss_alpha # 辅助损失函数的 alpha 参数
self.seq_aux = args.seq_aux # 是否在序列级别上计算辅助损失,默认为 True
self.w = nn.Linear(self.gating_dim, self.n_routed_experts, bias = False)
self.reset_parameters()
def reset_parameters(self) -> None:
import torch.nn.init as init
init.kaiming_normal_(self.w.weight) # 初始化参数
def forward(self, x: torch.Tensor):
bsz, seq_len, dim = x.shape
hidden_states = x.view(-1, dim)
scores = self.w(hidden_states) # (bsz * seq_len, n_routed_experts)
if self.scoring_func == "softmax":
scores = F.softmax(scores, dim = -1)
else:
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
# (bsz * seq_len, n_routed_experts),score[i][j] 表示每个序列里第 j 个专家的权重 / 评分
topk_weight, topk_idx = torch.topk(scores, self.topk, dim = -1, sorted = False)
# 获得k个最大的权重和对应的专家 (bsz * seq_len, k)
if self.norm_topk_prob: # 原文里还有判断self.topk > 1,我认为没有必要
denominator = topk_weight.sum(dim = -1) + 1e-20
topk_weight = topk_weight / denominator # 归一化权重
if self.training and self.alpha > 0:
# 训练阶段,并且 alpha > 0。要是 alpha <= 0 那 aux_loss 就是非正数,就是不合法的 loss
scores_for_aux = scores # (bsz * seq_len, n_routed_experts)
aux_topk = self.topk
topk_idx_for_aux_loss = topk_idx.view(bsz, -1) # (bsz, seq_len * k)
if self.seq_aux: # 在序列级别上计算辅助损失
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1).mean(dim = 1)
# 第一步:算出 ce (bsz * n_routed_experts)
ce = torch.zeros(bsz, self.n_routed_experts)
ce.scatter_add_(1, topk_idx_for_aux_loss, torch.ones(bsz, seq_len * aux_topk,
device = hidden_states.device).div_(
seq_len * aux_topk / self.n_routed_experts
))
# 保留 topk_idx 里面的bsz,用 idx 作为第二维度在 ce 里进行累加
# 每个 batch 里使用的专家总数就是 seq_len * k ,这可能就是为什么要除以 seq_len * aux_topk
# 最后还要乘一个专家个数,这个在下面不在序列级别算损失的时候也要用
# 第二步:ce 和 scores_for_seq_aux 按位相乘
# 第三步:按位相乘的效果按专家求和,得到长为 bsz 的序列,然后求均值,再乘以 alpha
aux_loss = (ce * scores_for_seq_aux).sum(dim = -1).mean() * self.alpha
else:
# 第一步:算出 ce (1, n_routed_experts)
# 具体方法是把 idx 展平做出独热编码,然后求均值;然后还要乘以专家个数
ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes = self.n_routed_experts).mean(dim = 0)
ce = ce * self.n_routed_experts
# 保证维度是专家个数。因为不一定所有专家都被选上,所以不指定的话有可能独热码维度比专家小
# 独热码返回的维度是 (bsz * seq_len * k, n_routed_experts)
# 第二步:算出每个专家权重的均值 (1, n_routed_experts)
# 具体方法是对 scores_for_aux (也就是上面求出的 scores )求均值
# 第三步:对上面二者求和再乘以 alpha
aux_loss = (ce * scores_for_aux.mean(dim = 0)).sum() * self.alpha
else:
aux_loss = None
return topk_weight, topk_idx, aux_loss
class MOEFeedForward(nn.Module):
def __init__(self, args: LMConfig) -> None:
super().__init__()
self.topk = args.num_experts_per_tok # top-k 里面的 k ,也就是选择的专家个数
self.n_routed_experts = args.num_experts_per_tok # 专家个数
self.experts = nn.ModuleList([
FeedForward(dim = args.dim,
hidden_dim = args.hidden_dim,
multi = args.multiple_of,
dropout = args.dropout)
for _ in range(self.n_routed_experts)
])
self.gate = MoEGate(args)
if args.n_shared_experts is not None:
self.shared_experts = FeedForward(
dim = args.dim,
hidden_dim = args.hidden_dim,
multi = args.multiple_of,
dropout = args.dropout
)
def work(self, x, topk_weight, topk_idx):
bsz, seq_len, dim = x.shape
# 先把 x 复制 k 份
x = x.view(-1, dim)
x = x.repeat_interleave(self.topk, dim = 0) # (bsz * seq_len * k, dim)
# 把权重展平
flat_topk_idx = topk_idx.view(-1) # (bsz * seq_len * k)
# 过专家
y = torch.empty_like(x, dtype = torch.float16) # (bsz * seq_len * k, dim)
for i in range(self.n_routed_experts):
y[flat_topk_idx == i] = self.experts[i](x[flat_topk_idx == i])
# 乘以权重
y = y.view(bsz, seq_len, self.topk, -1)
y = y * topk_weight.unsqueeze(-1).sum(dim = 1) # (bsz * seq_len, dim)
# 恢复成输入的形状
y = y.view(bsz, seq_len, -1)
return y
def forward(self, x):
# x 是(bsz, seq_len, dim)
topk_weight, topk_idx, _ = self.gate(x) # 确定选哪些专家及其权重
# (bsz * seq_len, k)
if self.training:
y = self.work(x, topk_weight, topk_idx)
else:
with torch.no_grad:
y = self.work(x, topk_weight, topk_idx)
if self.args.n_shared_experts is not None:
y = y + self.shared_experts(y)
return y
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, args: LMConfig) -> None:
# layer_id 是当前块的编号
super().__init__()
self.attn_norm = RMSNorm(dim = args.dim, eps = args.norm_eps)
self.attn = Attention(args)
self.ffn_norm = RMSNorm(dim = args.dim, eps = args.norm_eps)
if args.use_moe:
self.feed_forward = MOEFeedForward(args)
else:
self.feed_forward = FeedForward(dim = args.dim,
hidden_dim = args.hidden_dim,
multi = args.multiple_of,
dropout = args.dropout)
def forward(self, x, weight, use_kv_cache = False):
# print("吾来也!!")
# print("第一步")
# def forward(self, x: torch.Tensor, weight: torch.Tensor, use_kv_cache = False)
x = x + self.attn(self.attn_norm(x), weight, use_kv_cache)
# print("第二步")
x = x + self.feed_forward(self.ffn_norm(x))
# print("第三步")
return x
# class Transformer(nn.Module):
class Transformer(PreTrainedModel):
config_class = LMConfig
last_loss: Optional[torch.Tensor]
def __init__(self, args: LMConfig = None) -> None:
super().__init__(args)
if not args:
args = LMConfig()
self.args = args
self.embedding = nn.Embedding(args.vocab_size, args.dim)
self.dropout = nn.Dropout(args.dropout) # 在 embedding 之后就要进行一个 dropout
self.layers = nn.ModuleList() # Transformer 块
for i in range(args.n_layers):
self.layers.append(TransformerBlock(i, args))
# 下面是旋转位置嵌入的权重,尺寸是 (max_seq_len, weight.dim // 2)
rotation_weight = get_rotation(dim = args.dim // args.n_heads, seq_len = args.max_seq_len)
self.register_buffer('rotation_weight', rotation_weight, persistent = False)
self.norm = RMSNorm(dim = args.dim, eps = args.norm_eps)
self.output = nn.Linear(args.dim, args.vocab_size, bias = False) # 最后的线性层
self.embedding.weight = self.output.weight
self.OUT = CausalLMOutputWithPast()
def forward(self, tokens: Optional[torch.Tensor] = None, targets: Optional[torch.Tensor] = None,
use_kv_cache = False, **key_args):
# Optional[torch.Tensor] 的意思就是可以传入张量,也可以传入 None
if 'input_ids' in key_args:
tokens = key_args['input_ids']
if 'attention_mask' in key_args:
tokens = key_args['attention_mask']
_, seq_len = tokens.shape # 输入的文本,一共有 bsz 个 batch ,每个文本的长度是 seq_len
x = self.embedding(tokens) # x 的尺寸是 (bsz, seq_len, dim)
x = self.dropout(x)
# print("embedding完成!")
# 下面就是获得位置编码,然后过 transformer block
r_w = self.rotation_weight[: seq_len]
# print("旋转编码完成!")
for layer in self.layers:
x = layer(x, r_w, use_kv_cache)
# print("正在训练......")
# print("Transformer块完成!")
x = self.norm(x) # 过归一化
if targets is not None: # 就是训练阶段的意思
logits = self.output(x) # (bsz, seq_len, vocal_size)
# print("算出预测值!")
# self.last_loss = F.cross_entropy(logits.view(-1, logits.shape[-1]), targets.view(-1), ignore_index = -1)
last_loss = F.cross_entropy(logits.view(-1, logits.shape[-1]), targets.view(-1), ignore_index = -1)
# print("算出误差")
# targets 是每个输入序列的下一个词
# ignore_idx 表示填充值,这里就是 -1 ,表示遇到 tensor 里有 -1 的直接当作空值处理
# F.cross_entropy 会先自动进行 softmax
else: # 就是评估阶段的意思
logits = self.output(x[:, [-1], :]) # (bsz, 1, vocal_size),也就是每个 batch 的最后一个序列
# self.last_loss = None
last_loss = None
# 没明白为什么一个是类变量,一个不是
self.OUT.__setitem__('logits', logits)
self.OUT.__setitem__('last_loss', last_loss)
# print("返回!")
return self.OUT
@torch.inference_mode()
# 可参看 https://zhuanlan.zhihu.com/p/667025336
def generate(self, idx, eos, max_new_tokens, temperature = 0.7, top_k = None,
stream = True, repetition_penalty = 1., use_kv_cache = True):
# idx 是 (bsz, seq_len),每个 seq 里面都是文本的词的下标
# eos 是 结束符。如果最后推出来生成的内容是结束符,就停止生成
# max_new_tokens 是最多能生成的词的个数
# temperature 是用来平滑概率的。在原来概率的基础上 * temperature 再进行 softmax 就可以缩小各词概率之间的差距,让选择概率小的词的几率增大
# top_k 是 Top-K Sampling 的参数。如果 top_k 是 None,那就不进行 Top-K Sampling ;否则就让 Top-K Sampling 里面的 k 是 top_k
# stream 指的是流式输出。如果要流式输出,那就是说每次生成新词就直接输出;否则就是全生成完毕再输出
# repetition_penalty 是惩罚项,用来降低前文出现过的词的概率,否则可能会出现循环文本
bsz, seq_len = idx.shape
while idx.shape[1] < max_new_tokens - 1: # 文本的大小不超过最大的文本长度,就可以继续
res = self(idx, use_kv_cache = use_kv_cache)
logits = res.logits # (bsz, vocal_size)
logits = logits[:, -1, :] # (bsz, 1, vocal_size)
# 降低前文出现过的词的概率
for b in range(bsz): # 遍历每一个 batch
for token in set(idx.tolist()[b]): # 获得不重复的 token 序列
logits[b, token] /= repetition_penalty
# 利用 temperature 进行概率的平滑
if temperature == 0.0:
# 直接选概率最高的 token ,idx_nxt 的尺寸是 (bsz, 1)
_, idx_nxt = torch.topk(logits, k = 1, dim = -1)
else:
logits = logits / temperature
if top_k is not None:
# 把概率排名在 k 以外的概率都设置成 0 ,这样就防止选择到概率过低的 token
v, _ = torch.topk(logits, k = min(top_k, logits.shape[-1]), dim = -1)
# v 在每个 batch 里是从大到小排好序的,尺寸是 (bsz, top_k)
logits[logits < v[:, [-1]]] = -float("Inf")
# v[:, [-1]] 就是每一个 batch 里的最小概率的概率值,大小是 (bsz, 1)
# logits < v[:, [-1]] 返回一个大小和 logits 一样的,由 True 和 False 组成的矩阵
# 具体来说,如果 logits[i][j] < v[i][0],那[i][j]位置就返回 True ,否则是 False
# 设置成负无穷,这样用 softmax 转成概率就是 0 了
probs = F.softmax(logits, dim = -1)
idx_nxt = torch.multinomial(probs, num_samples = 1, generator = None)
# 根据 prob 随机选择一个 token
if idx_nxt == eos:
break # 可能有问题
idx = torch.concat((idx, idx_nxt), dim = -1) # 放入新生成的内容
if stream:
yield idx[:, seq_len:] # 每次新生成内容就s输出所有新生成的东西
if not stream:
yield idx[:, seq_len:]
@torch.inference_mode()
def eval_answer(self, idx): # 没看出有什么作用
idx_cond = idx if idx.shape[1] < self.args.max_seq_len else idx[:, -self.args.max_seq_len:]
res = self(idx_cond)
logits = res.logits[:, -1, :]
return logits |