Junteng commited on
Commit
c982e86
·
verified ·
1 Parent(s): 1d04ff2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +69 -3
README.md CHANGED
@@ -1,3 +1,69 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ tags:
6
+ - LLM
7
+ library_name: transformers
8
+ base_model:
9
+ - Qwen/Qwen2.5-7B
10
+ datasets:
11
+ - MiniMaxAI/SynLogic
12
+ ---
13
+ # SynLogic-7B: Logical Reasoning Model
14
+
15
+ * 🐙 **GitHub Repo:** [https://github.com/MiniMax-AI/SynLogic](https://github.com/MiniMax-AI/SynLogic)
16
+ * 📜 **Paper (arXiv):** [https://arxiv.org/abs/2505.19641](https://arxiv.org/abs/2505.19641)
17
+ * 🤗 **Dataset:** [SynLogic on Hugging Face](https://huggingface.co/datasets/MiniMaxAI/SynLogic)
18
+
19
+ ## Model Overview
20
+
21
+ **SynLogic-7B** is a logical reasoning model built on Qwen2.5-7B-Base and trained using reinforcement learning on our SynLogic dataset. Despite its smaller size, the model demonstrates strong logical reasoning capabilities and effective generalization to mathematical domains.
22
+
23
+ ## Key Features
24
+
25
+ * **Comprehensive Logical Reasoning:** Trained on 27 diverse logical reasoning tasks (adapted for 7B scale) including Sudoku, Game of 24, Cipher, and more
26
+ * **Verifiable Training:** All training data can be automatically verified, enabling effective reinforcement learning
27
+ * **Strong Generalization:** Transfers logical reasoning skills to mathematical problem-solving without explicit math training
28
+ * **Efficient Scale:** Achieves strong performance with a more compact 7B parameter model
29
+
30
+ ## Performance Highlights
31
+
32
+ ### Logical Reasoning Benchmarks
33
+ | Model | KOR-Bench | BBH | BBEH |
34
+ |-------|-----------|-----|------|
35
+ | Qwen2.5-7B-Instruct | 38.6 | 62.7 | 12.4 |
36
+ | **SynLogic-7B** | **48.1** | **66.5** | 8.0 |
37
+
38
+ ### Mathematical Benchmarks
39
+ | Model | AIME 2024 | MATH 500 | AMC 2023 |
40
+ |-------|-----------|----------|----------|
41
+ | Qwen2.5-7B-Base | 0.3 | 64.6 | 30.0 |
42
+ | Qwen2.5-7B-Instruct | 6.3 | 76.4 | 52.5 |
43
+ | **SynLogic-7B** | **10.0** | 71.8 | **55.0** |
44
+
45
+ **Key Achievements:**
46
+ - **+9.5 points** improvement over Qwen2.5-7B-Instruct on KOR-Bench
47
+ - Strong mathematical generalization with **10.0%** on AIME 2024 (vs 6.3% for instruct model)
48
+ - Effective logical reasoning training despite smaller model size
49
+
50
+ ## Training Details
51
+
52
+ * **Base Model:** Qwen2.5-7B-Base
53
+ * **Training Algorithm:** GRPO (Group Relative Policy Optimization)
54
+ * **Dataset:** 16k SynLogic-Easy samples with controlled difficulty optimized for 7B scale
55
+ * **Reward Design:** Binary rewards based on format adherence and correctness verification
56
+ * **Response Length:** Achieves average response lengths of ~2,500 tokens with emerging reflection behaviors
57
+
58
+ ## Citation
59
+
60
+ ```bibtex
61
+ @misc{liu2025synlogic,
62
+ title={SynLogic: Synthesizing Verifiable Reasoning Data at Scale for Learning Logical Reasoning and Beyond},
63
+ author={Junteng Liu and Yuanxiang Fan and Zhuo Jiang and Han Ding and Yongyi Hu and Chi Zhang and Yiqi Shi and Shitong Weng and Aili Chen and Shiqi Chen and Yunan Huang and Mozhi Zhang and Pengyu Zhao and Junjie Yan and Junxian He},
64
+ year={2025},
65
+ eprint={2505.19641},
66
+ archivePrefix={arXiv},
67
+ primaryClass={cs.AI},
68
+ url={https://arxiv.org/abs/2505.19641},
69
+ }