xilanhua12138 commited on
Commit
fc88871
Β·
verified Β·
1 Parent(s): 36ddafa

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/cohp.png filter=lfs diff=lfs merge=lfs -text
37
+ assets/example1.png filter=lfs diff=lfs merge=lfs -text
38
+ assets/example2.png filter=lfs diff=lfs merge=lfs -text
39
+ assets/gradio.png filter=lfs diff=lfs merge=lfs -text
40
+ assets/rl1.jpg filter=lfs diff=lfs merge=lfs -text
41
+ assets/rl2.jpg filter=lfs diff=lfs merge=lfs -text
42
+ assets/rl_teaser.jpg filter=lfs diff=lfs merge=lfs -text
43
+ assets/teaser.png filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+
3
+ # 🎯 HPSv3: Towards Wide-Spectrum Human Preference Score (ICCV 2025)
4
+
5
+ [![Project Website](https://img.shields.io/badge/🌐-Project%20Website-deepgray)](https://mizzenai.github.io/HPSv3.project/)
6
+ [![arXiv](https://img.shields.io/badge/arXiv-2411.07232-b31b1b.svg)]()
7
+ [![ICCV 2025](https://img.shields.io/badge/ICCV-2025-blue.svg)]()
8
+ [![Model](https://img.shields.io/badge/πŸ€—-Model-yellow)](https://huggingface.co/MizzenAI/HPSv3)
9
+ [![Dataset](https://img.shields.io/badge/πŸ€—-Dataset-green)](https://huggingface.co/MizzenAI/HPDv3)
10
+
11
+
12
+ <!-- **Yuhang Ma**<sup>1,2*</sup>&ensp; **Yunhao Shui**<sup>1,3*</sup>&ensp; **Xiaoshi Wu**<sup>4</sup>&ensp; **Keqiang Sun**<sup>1,4†</sup>&ensp; **Hongsheng Li**<sup>4,5,6†</sup>
13
+
14
+ <sup>1</sup>Mizzen AI&ensp;&ensp; <sup>2</sup>King’s College London&ensp;&ensp; <sup>3</sup>Shanghai Jiaotong University&ensp;&ensp; <sup>4</sup>CUHK MMLab&ensp;&ensp; <sup>5</sup>Shanghai AI Laboratory&ensp;&ensp; <sup>6</sup>CPII, InnoHK&ensp;&ensp;
15
+
16
+ <sup>*</sup>Equal Contribution&ensp;&ensp; <sup>†</sup>Equal Advising -->
17
+
18
+
19
+ **Yuhang Ma**<sup>1,3*</sup>&ensp; **Yunhao Shui**<sup>1,4*</sup>&ensp; **Xiaoshi Wu**<sup>2</sup>&ensp; **Keqiang Sun**<sup>1,2†</sup>&ensp; **Hongsheng Li**<sup>2,4,5†</sup>
20
+
21
+ <sup>1</sup>Mizzen AI&ensp;&ensp; <sup>2</sup>CUHK MMLab&ensp;&ensp; <sup>3</sup>King’s College London&ensp;&ensp; <sup>4</sup>Shanghai Jiaotong University&ensp;&ensp;
22
+
23
+ <sup>5</sup>Shanghai AI Laboratory&ensp;&ensp; <sup>6</sup>CPII, InnoHK&ensp;&ensp;
24
+
25
+ <sup>*</sup>Equal Contribution&ensp; <sup>†</sup>Equal Advising
26
+
27
+ </div>
28
+
29
+
30
+ ## πŸ“– Introduction
31
+
32
+ This is the official implementation for the paper: [HPSv3: Towards Wide-Spectrum Human Preference Score]().
33
+ First, we introduce a VLM-based preference model **HPSv3**, trained on a "wide spectrum" preference dataset **HPDv3** with 1.08M text-image pairs and 1.17M annotated pairwise comparisons, covering both state-of-the-art and earlier generative models, as well as high- and low-quality real-world images. Second, we propose a novel reasoning approach for iterative image refinement, **COHP**, which efficiently improves image quality without requiring additional training data.
34
+
35
+ <p align="center">
36
+ <img src="assets/teaser.png" alt="Teaser" width="900"/>
37
+ </p>
38
+
39
+
40
+ ## ✨ Updates
41
+
42
+ - **[2025-8-05]** πŸŽ‰ We release HPSv3: inference code, training code, cohp code and model weights.
43
+
44
+ ## πŸ“‘ Table of Contents
45
+ 1. [πŸš€ Quick Start](#πŸš€-quick-start)
46
+ 2. [🌐 Gradio Demo](#🌐-gradio-demo)
47
+ 3. [πŸ‹οΈ Training](#πŸ‹οΈ-training)
48
+ 4. [πŸ“Š Benchmark](#πŸ“Š-benchmark)
49
+ 5. [🎯 COHP (Consistency-guided Human Preference Optimization)](#🎯-cohp-consistency-guided-human-preference-optimization)
50
+
51
+ ---
52
+
53
+ ## πŸš€ Quick Start
54
+
55
+ HPSv3 is a state-of-the-art human preference score model for evaluating image quality and prompt alignment. It builds upon the Qwen2-VL architecture to provide accurate assessments of generated images.
56
+
57
+ ### πŸ’» Installation
58
+
59
+ <!-- # Method 1: Pypi download and install for inference.
60
+ pip install hpsv3 -->
61
+
62
+ ```bash
63
+
64
+ # Install locally for development or training.
65
+ git clone https://github.com/MizzenAI/HPSv3.git
66
+ cd HPSv3
67
+
68
+ conda env create -f environment.yaml
69
+ conda activate hpsv3
70
+ # Recommend: Install flash-attn
71
+ pip install flash-attn==2.7.4.post1
72
+
73
+ pip install -e .
74
+ ```
75
+
76
+ ### πŸ› οΈ Basic Usage
77
+
78
+ #### Simple Inference Example
79
+
80
+ ```python
81
+ from hpsv3 import HPSv3RewardInferencer
82
+
83
+ # Initialize the model
84
+ inferencer = HPSv3RewardInferencer(device='cuda')
85
+
86
+ # Evaluate images
87
+ image_paths = ["assets/example1.png", "assets/example2.png"]
88
+ prompts = [
89
+ "cute chibi anime cartoon fox, smiling wagging tail with a small cartoon heart above sticker",
90
+ "cute chibi anime cartoon fox, smiling wagging tail with a small cartoon heart above sticker"
91
+ ]
92
+
93
+ # Get preference scores
94
+ rewards = inferencer.reward(image_paths, prompts)
95
+ scores = [reward[0].item() for reward in rewards] # Extract mu values
96
+ print(f"Image scores: {scores}")
97
+ ```
98
+
99
+ ---
100
+
101
+ ## 🌐 Gradio Demo
102
+
103
+ Launch an interactive web interface to test HPSv3:
104
+
105
+ ```bash
106
+ python gradio_demo/demo.py
107
+ ```
108
+
109
+ The demo will be available at `http://localhost:7860` and provides:
110
+
111
+ <p align="center">
112
+ <img src="assets/gradio.png" alt="Gradio Demo" width="500"/>
113
+ </p>
114
+
115
+ ## πŸ‹οΈ Training
116
+
117
+ ### πŸ“ Dataset
118
+
119
+ #### Human Preference Dataset v3
120
+
121
+ Human Preference Dataset v3 (HPD v3) comprises 1.08M text-image pairs and 1.17M annotated pairwise data. To modeling the wide spectrum of human preference, we introduce newest state-of-the-art generative models and high quality real photographs while maintaining old models and lower quality real images.
122
+
123
+ <details close>
124
+ <summary>Detail information of HPD v3</summary>
125
+
126
+ | Image Source | Type | Num Image | Prompt Source | Split |
127
+ |--------------|------|-----------|---------------|-------|
128
+ | High Quality Image (HQI) | Real Image | 57759 | VLM Caption | Train & Test |
129
+ | MidJourney | - | 331955 | User | Train |
130
+ | CogView4 | DiT | 400 | HQI+HPDv2+JourneyDB | Test |
131
+ | FLUX.1 dev | DiT | 48927 | HQI+HPDv2+JourneyDB | Train & Test |
132
+ | Infinity | Autoregressive | 27061 | HQI+HPDv2+JourneyDB | Train & Test |
133
+ | Kolors | DiT | 49705 | HQI+HPDv2+JourneyDB | Train & Test |
134
+ | HunyuanDiT | DiT | 46133 | HQI+HPDv2+JourneyDB | Train & Test |
135
+ | Stable Diffusion 3 Medium | DiT | 49266 | HQI+HPDv2+JourneyDB | Train & Test |
136
+ | Stable Diffusion XL | Diffusion | 49025 | HQI+HPDv2+JourneyDB | Train & Test |
137
+ | Pixart Sigma | Diffusion | 400 | HQI+HPDv2+JourneyDB | Test |
138
+ | Stable Diffusion 2 | Diffusion | 19124 | HQI+JourneyDB | Train & Test |
139
+ | CogView2 | Autoregressive | 3823 | HQI+JourneyDB | Train & Test |
140
+ | FuseDream | Diffusion | 468 | HQI+JourneyDB | Train & Test |
141
+ | VQ-Diffusion | Diffusion | 18837 | HQI+JourneyDB | Train & Test |
142
+ | Glide | Diffusion | 19989 | HQI+JourneyDB | Train & Test |
143
+ | Stable Diffusion 1.4 | Diffusion | 18596 | HQI+JourneyDB | Train & Test |
144
+ | Stable Diffusion 1.1 | Diffusion | 19043 | HQI+JourneyDB | Train & Test |
145
+ | Curated HPDv2 | - | 327763 | - | Train |
146
+ </details>
147
+
148
+ #### Download HPDv3
149
+ ```bash
150
+ huggingface-cli download --repo-type dataset MizzenAI/HPDv3 --local-dir /your-local-dataset-path
151
+ ```
152
+
153
+ #### Pairwise Training Data Format
154
+
155
+ **Important Note: For simplicity, path1's image is always the prefered one**
156
+
157
+ ```json
158
+ [
159
+ {
160
+ "prompt": "A beautiful landscape painting",
161
+ "path1": "path/to/better/image.jpg",
162
+ "path2": "path/to/worse/image.jpg",
163
+ "confidence": 0.95
164
+ },
165
+ ...
166
+ ]
167
+ ```
168
+
169
+ ### πŸš€ Training Command
170
+
171
+ ```bash
172
+ # Use Method 2 to install locally
173
+ git clone https://github.com/MizzenAI/HPSv3.git
174
+ cd HPSv3
175
+
176
+ conda env create -f environment.yaml
177
+ conda activate hpsv3
178
+ # Recommend: Install flash-attn
179
+ pip install flash-attn==2.7.4.post1
180
+
181
+ pip install -e .
182
+
183
+ # Train with 7B model
184
+ deepspeed hpsv3/train.py --config hpsv3/config/HPSv3_7B.yaml
185
+ ```
186
+
187
+ <details close>
188
+ <summary>Important Config Argument</summary>
189
+
190
+ | Configuration Section | Parameter | Value | Description |
191
+ |----------------------|-----------|-------|-------------|
192
+ | **Model Configuration** | `rm_head_type` | `"ranknet"` | Type of reward model head architecture |
193
+ | | `lora_enable` | `False` | Enable LoRA (Low-Rank Adaptation) for efficient fine-tuning. If `False`, language tower is fully trainable|
194
+ | | `vision_lora` | `False` | Apply LoRA specifically to vision components. If `False`, vision tower is fully trainable|
195
+ | | `model_name_or_path` | `"Qwen/Qwen2-VL-7B-Instruct"` | Path to the base model checkpoint |
196
+ | **Data Configuration** | `confidence_threshold` | `0.95` | Minimum confidence score for training data |
197
+ | | `train_json_list` | `[example_train.json]` | List of training data files |
198
+ | | `test_json_list` | `[validation_sets]` | List of validation datasets with names |
199
+ | | `output_dim` | `2` | Output dimension of the reward head for $\mu$ and $\sigma$|
200
+ | | `loss_type` | `"uncertainty"` | Loss function type for training |
201
+ </details>
202
+
203
+ ---
204
+
205
+ ## πŸ“Š Benchmark
206
+ To evaluate **HPSv3 preference accuracy** or **human preference score of image generation model**, follow the detail instruction is in [Evaluate Insctruction](evaluate/README.md)
207
+
208
+ <details open>
209
+ <summary> Preference Accuracy of HPSv3 </summary>
210
+
211
+ | Model | ImageReward | Pickscore | HPDv2 | HPDv3 |
212
+ |------|-------------|-----------|-------|-------|
213
+ | [CLIP ViT-H/14](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K) | 57.1 | 60.8 | 65.1 | 48.6 |
214
+ | [Aesthetic Score Predictor](https://github.com/christophschuhmann/improved-aesthetic-predictor) | 57.4 | 56.8 | 76.8 | 59.9 |
215
+ | [ImageReward](https://github.com/THUDM/ImageReward) | 65.1 | 61.1 | 74.0 | 58.6 |
216
+ | [PickScore](https://github.com/yuvalkirstain/PickScore) | 61.6 | <u>70.5</u> | 79.8 | <u>65.6</u> |
217
+ | [HPS](https://github.com/tgxs002/align_sd) | 61.2 | 66.7 | 77.6 | 63.8 |
218
+ | [HPSv2](https://github.com/tgxs002/HPSv2) | 65.7 | 63.8 | 83.3 | 65.3 |
219
+ | [MPS](https://github.com/Kwai-Kolors/MPS) | **67.5** | 63.1 | <u>83.5</u> | 64.3 |
220
+ | HPSv3 | <u>66.8</u> | **72.8** | **85.4** | **76.9** |
221
+
222
+ </details>
223
+
224
+ <details open>
225
+ <summary> Image Generation Benchmark of HPSv3 </summary>
226
+
227
+ | Model | Overall | Characters | Arts | Design | Architecture | Animals | Natural Scenery | Transportation | Products | Others | Plants | Food | Science |
228
+ |------|---------|------------|------|--------|--------------|---------|-----------------|----------------|----------|--------|--------|------|---------|
229
+ | Kolors | **10.55** | **11.79** | **10.47** | **9.87** | <u>10.82</u> | **10.60** | 9.89 | <u>10.68</u> | <u>10.93</u> | **10.50** | **10.63** | <u>11.06</u> | <u>9.51</u> |
230
+ | Flux-dev | <u>10.43</u> | <u>11.70</u> | <u>10.32</u> | 9.39 | **10.93** | <u>10.38</u> | <u>10.01</u> | **10.84** | **11.24** | <u>10.21</u> | 10.38 | **11.24** | 9.16 |
231
+ | Playgroundv2.5 | 10.27 | 11.07 | 9.84 | <u>9.64</u> | 10.45 | <u>10.38</u> | 9.94 | 10.51 | <u>10.62</u> | 10.15 | <u>10.62</u> | 10.84 | 9.39 |
232
+ | Infinity | 10.26 | 11.17 | 9.95 | 9.43 | 10.36 | 9.27 | **10.11** | 10.36 | 10.59 | 10.08 | 10.30 | 10.59 | **9.62** |
233
+ | CogView4 | 9.61 | 10.72 | 9.86 | 9.33 | 9.88 | 9.16 | 9.45 | 9.69 | 9.86 | 9.45 | 9.49 | 10.16 | 8.97 |
234
+ | PixArt-Ξ£ | 9.37 | 10.08 | 9.07 | 8.41 | 9.83 | 8.86 | 8.87 | 9.44 | 9.57 | 9.52 | 9.73 | 10.35 | 8.58 |
235
+ | Gemini 2.0 Flash | 9.21 | 9.98 | 8.44 | 7.64 | 10.11 | 9.42 | 9.01 | 9.74 | 9.64 | 9.55 | 10.16 | 7.61 | 9.23 |
236
+ | SDXL | 8.20 | 8.67 | 7.63 | 7.53 | 8.57 | 8.18 | 7.76 | 8.65 | 8.85 | 8.32 | 8.43 | 8.78 | 7.29 |
237
+ | HunyuanDiT | 8.19 | 7.96 | 8.11 | 8.28 | 8.71 | 7.24 | 7.86 | 8.33 | 8.55 | 8.28 | 8.31 | 8.48 | 8.20 |
238
+ | Stable Diffusion 3 Medium | 5.31 | 6.70 | 5.98 | 5.15 | 5.25 | 4.09 | 5.24 | 4.25 | 5.71 | 5.84 | 6.01 | 5.71 | 4.58 |
239
+ | SD2 | -0.24 | -0.34 | -0.56 | -1.35 | -0.24 | -0.54 | -0.32 | 1.00 | 1.11 | -0.01 | -0.38 | -0.38 | -0.84 |
240
+
241
+ </details>
242
+
243
+ ---
244
+
245
+ ## 🎯 COHP (Consistency-guided Human Preference Optimization)
246
+
247
+ COHP is our novel reasoning approach for iterative image refinement that efficiently improves image quality without requiring additional training data. It works by generating images with multiple diffusion models, selecting the best one using reward models, and then iteratively refining it through image-to-image generation.
248
+
249
+ <p align="center">
250
+ <img src="assets/cohp.png" alt="cohp" width="600"/>
251
+ </p>
252
+
253
+ ### πŸš€ Usage
254
+
255
+ #### Basic Command
256
+
257
+ ```bash
258
+ python hpsv3/cohp/run_cohp.py \
259
+ --prompt "A beautiful sunset over mountains" \
260
+ --index "sample_001" \
261
+ --device "cuda:0" \
262
+ --reward_model "hpsv3"
263
+ ```
264
+
265
+ #### Parameters
266
+
267
+ - `--prompt`: Text prompt for image generation (required)
268
+ - `--index`: Unique identifier for saving results (required)
269
+ - `--device`: GPU device to use (default: 'cuda:1')
270
+ - `--reward_model`: Reward model for scoring images
271
+ - `hpsv3`: HPSv3 model (default, recommended)
272
+ - `hpsv2`: HPSv2 model
273
+ - `imagereward`: ImageReward model
274
+ - `pickscore`: PickScore model
275
+
276
+ #### Supported Generation Models
277
+
278
+ COHP uses multiple state-of-the-art diffusion models for initial generation: **FLUX.1 dev**, **Kolors**, **Stable Diffusion 3 Medium**, **Playground v2.5**
279
+
280
+ #### How COHP Works
281
+
282
+ 1. **Multi-Model Generation**: Generates images using all supported models
283
+ 2. **Reward Scoring**: Evaluates each image using the specified reward model
284
+ 3. **Best Model Selection**: Chooses the model that produced the highest-scoring image
285
+ 4. **Iterative Refinement**: Performs 5 rounds of image-to-image generation to improve quality
286
+ 5. **Adaptive Strength**: Uses strength=0.8 for rounds 1-2, then 0.5 for rounds 3-5
287
+
288
+ ---
289
+
290
+ ## 🦾 Results as Reward Model
291
+
292
+ We perform [DanceGRPO](https://github.com/XueZeyue/DanceGRPO) as the reinforcement learning method. Here are some results.
293
+ All experiments using the same setting and we use **Stable Diffusion 1.4** as our backbone.
294
+
295
+ <div style="display: flex; justify-content: space-around; align-items: center;">
296
+ <div style="text-align: center;">
297
+ <img src="assets/rl1.jpg" width="290"/>
298
+ </div>
299
+ <div style="text-align: center;">
300
+ <img src="assets/rl2.jpg" width="300"/>
301
+ </div>
302
+ </div>
303
+
304
+ ### More Results of HPsv3 as Reward Model (Stable Diffusion 1.4)
305
+ <p align="center">
306
+ <img src="assets/rl_teaser.jpg" alt="cohp" width="600"/>
307
+ </p>
308
+
309
+ ## πŸ“š Citation
310
+
311
+ If you find HPSv3 useful in your research, please cite our work:
312
+
313
+ ```bibtex
314
+ @inproceedings{hpsv3,
315
+ title={HPSv3: Towards Wide-Spectrum Human Preference Score},
316
+ author={Ma, Yuhang and Wu, Xiaoshi and Sun, Keqiang and Li, Hongsheng},
317
+ booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
318
+ year={2025}
319
+ }
320
+ ```
321
+
322
+
323
+ ---
324
+
325
+ ## πŸ™ Acknowledgements
326
+
327
+ We would like to thank the [VideoAlign](https://github.com/KwaiVGI/VideoAlign) codebase for providing valuable references.
328
+
329
+ ---
330
+
331
+ ## πŸ’¬ Support
332
+
333
+ For questions and support:
334
+ - **Issues**: [GitHub Issues](https://github.com/MizzenAI/HPSv3/issues)
335
+ - **Email**: xilanhua12138@sjtu.edu.cn & yhma@mizzen.ai
assets/cohp.png ADDED

Git LFS Details

  • SHA256: c6ba93f35c0d5b56d3f2e1812ee2bcb04330be3ea0b71227687d30215b4e6b42
  • Pointer size: 132 Bytes
  • Size of remote file: 2.65 MB
assets/example1.png ADDED

Git LFS Details

  • SHA256: 8159df1e68c79ee155c0c9217f4f6d20ab6bdd295702b758fe56ce43910c8f74
  • Pointer size: 132 Bytes
  • Size of remote file: 1.47 MB
assets/example2.png ADDED

Git LFS Details

  • SHA256: 1f106939e52ee714a91fcfa31dc2bd88b07deca641eec658b7dd6414ca3255aa
  • Pointer size: 131 Bytes
  • Size of remote file: 595 kB
assets/gradio.png ADDED

Git LFS Details

  • SHA256: e55121fa035b0969563371c8e89bddfe4053197f046414f0f8681b4ea7f34a7d
  • Pointer size: 132 Bytes
  • Size of remote file: 1.28 MB
assets/rl1.jpg ADDED

Git LFS Details

  • SHA256: 68c8def6a4de4d32c7c872b403816f5269c80feeb44863bd02f39f761c07e81d
  • Pointer size: 133 Bytes
  • Size of remote file: 11.9 MB
assets/rl2.jpg ADDED

Git LFS Details

  • SHA256: 19db3fc491802f72b9d2a947fa88a75bed69ce3a466c9bb7e9d9a39fa01443b4
  • Pointer size: 133 Bytes
  • Size of remote file: 10.6 MB
assets/rl_teaser.jpg ADDED

Git LFS Details

  • SHA256: cdd7da9df645560390f936494c24fd3fa4890b6d62df4a29771c1ed244629458
  • Pointer size: 133 Bytes
  • Size of remote file: 13.1 MB
assets/teaser.png ADDED

Git LFS Details

  • SHA256: 55bfc19d2970fb4303edf6039e8c6dd1dd4b5b32aee3aa1fe8056c421f6dcd48
  • Pointer size: 132 Bytes
  • Size of remote file: 1.62 MB