File size: 10,293 Bytes
996895d
c0447ed
0c38083
 
 
b2de29e
0c38083
93d2288
ca5d527
93d2288
31ad35a
5518c26
6f13b8c
07f9733
31ad35a
9be4c60
586518f
0c38083
586518f
996895d
 
 
 
 
 
 
 
 
 
 
 
 
586518f
6696134
0c38083
 
 
8be1cbc
6696134
 
 
0c38083
b67c020
 
0c38083
 
6696134
0c38083
6696134
0c38083
8be1cbc
0c38083
996895d
b67c020
0c38083
 
996895d
b2de29e
ca5d527
 
 
98c9c23
9be4c60
ca5d527
9be4c60
0c38083
ab22d1a
0c38083
93d2288
996895d
 
31ad35a
93d2288
1c6c20c
93d2288
01e617c
 
 
 
996895d
b67c020
 
01e617c
93d2288
01e617c
 
93d2288
b2de29e
6696134
0c38083
c0447ed
 
ca5d527
 
 
 
 
 
 
9be4c60
0c38083
 
 
c0447ed
ca5d527
 
9be4c60
 
ca5d527
9be4c60
ca5d527
9be4c60
 
 
98c9c23
93a0cf7
 
 
 
 
 
 
9be4c60
996895d
9be4c60
 
 
 
 
 
 
c0447ed
 
2a2d4ba
ca5d527
 
93a0cf7
9be4c60
ca5d527
e19aebc
98c9c23
e19aebc
ca5d527
9be4c60
98c9c23
9be4c60
 
98c9c23
 
 
 
9be4c60
ca5d527
 
 
 
b12f0fd
ca5d527
 
 
 
5518c26
9be4c60
ca5d527
d3badad
9be4c60
 
 
 
 
 
 
 
996895d
 
98c9c23
d3badad
 
 
996895d
4499bab
9be4c60
31ad35a
 
0c38083
1f45d99
 
 
1c6c20c
0c38083
93d2288
1c6c20c
 
 
 
31ad35a
0c38083
 
 
 
 
8be1cbc
c6b44fd
1f45d99
8be1cbc
0c38083
 
93d2288
 
c6b44fd
93d2288
c0447ed
8be1cbc
2aed46a
 
 
 
8be1cbc
2aed46a
 
8be1cbc
2aed46a
 
93d2288
 
2aed46a
93d2288
2aed46a
e046f39
0c38083
 
 
ab22d1a
0c38083
 
730ea7e
 
0c38083
ab22d1a
 
0c38083
586518f
0c38083
 
ab22d1a
0c38083
01e617c
 
8be1cbc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

import queue
import threading
import time
from logging import getLogger
import asyncio
import numpy as np
import config
import collections
from api_model import TransResult, Message, DebugResult

from .utils import log_block, save_to_wave, TestDataWriter, filter_words
from .translatepipes import TranslatePipes

from transcribe.pipelines import MetaItem


logger = getLogger("TranscriptionService")


def _get_text_separator(language: str) -> str:
    """根据语言返回适当的文本分隔符"""
    return "" if language == "zh" else " "


def _start_thread(target_function) -> threading.Thread:
    """启动守护线程执行指定函数"""
    thread = threading.Thread(target=target_function)
    thread.daemon = True
    thread.start()
    return thread


class WhisperTranscriptionService:
    """
    Whisper语音转录服务类,处理音频流转录和翻译
    """

    SERVER_READY = "SERVER_READY"
    DISCONNECT = "DISCONNECT"

    def __init__(self, websocket, pipe: TranslatePipes, language=None, dst_lang=None, client_uid=None):
        print('>>>>>>>>>>>>>>>> init service >>>>>>>>>>>>>>>>>>>>>>')
        print('src_lang:', language)
        self.source_language = language  # 源语言
        self.target_language = dst_lang  # 目标翻译语言
        self.client_uid = client_uid
        # 转录结果稳定性管理
        self.websocket = websocket
        self._translate_pipe = pipe

        # 音频处理相关
        self.sample_rate = config.SAMPLE_RATE

        self.lock = threading.Lock()
        # 文本分隔符,根据语言设置
        self.text_separator = _get_text_separator(language)
        self.loop = asyncio.get_event_loop()
        #  原始音频队列
        self._frame_queue = queue.Queue()
        #  音频队列缓冲区
        self.frames_np = np.array([], dtype=np.float32)
        self.frames_np_start_timestamp = None
        #  完整音频队列
        self.full_segments_queue = collections.deque()
        # 启动处理线程
        self._translate_thread_stop = threading.Event()
        self._frame_processing_thread_stop = threading.Event()

        self.translate_thread = _start_thread(self._transcription_processing_loop)
        self.frame_processing_thread = _start_thread(self._frame_processing_loop)
        self.row_number = 0
        # for test
        self._transcribe_time_cost = 0.
        self._translate_time_cost = 0.

        if config.SAVE_DATA_SAVE:
            self._save_task_stop = threading.Event()
            self._save_queue = queue.Queue()
            self._save_thread = _start_thread(self.save_data_loop)


    def save_data_loop(self):
        writer = TestDataWriter()
        while not self._save_task_stop.is_set():
            test_data = self._save_queue.get()
            writer.write(test_data)  # Save test_data to CSV

    def add_frames(self, frame_np: np.ndarray) -> None:
        """添加音频帧到处理队列"""
        self._frame_queue.put(frame_np)

    def _apply_voice_activity_detection(self, frame_np:np.array):
        """应用语音活动检测来优化音频缓冲区"""
        processed_audio = self._translate_pipe.voice_detect(frame_np.tobytes())
        speech_audio =  np.frombuffer(processed_audio.audio, dtype=np.float32)
        speech_status = processed_audio.speech_status
        return speech_audio, speech_status


    def _frame_processing_loop(self) -> None:
        """从队列获取音频帧并合并到缓冲区"""
        while not self._frame_processing_thread_stop.is_set():
            try:
                frame_np = self._frame_queue.get(timeout=0.1)
                frame_np, speech_status = self._apply_voice_activity_detection(frame_np)

                if frame_np is None:
                    continue

                with self.lock:
                    if speech_status == "START" and self.frames_np_start_timestamp is None:
                        self.frames_np_start_timestamp = time.time()
                    # 添加音频到音频缓冲区
                    self.frames_np = np.append(self.frames_np, frame_np)
                    if len(self.frames_np) >= self.sample_rate * config.MAX_SPEECH_DURATION_S:
                        audio_array=self.frames_np.copy()
                        self.full_segments_queue.appendleft(audio_array) # 根据时间是否满足三秒长度 来整合音频块
                        self.frames_np_start_timestamp = time.time()
                        self.frames_np = np.array([], dtype=np.float32)

                    elif speech_status == "END" and len(self.frames_np) > 0 and self.frames_np_start_timestamp:
                        time_diff = time.time() - self.frames_np_start_timestamp
                        if time_diff >= config.FRAME_SCOPE_TIME_THRESHOLD:
                            audio_array=self.frames_np.copy()
                            self.full_segments_queue.appendleft(audio_array) # 根据时间是否满足三秒长度 来整合音频块
                            self.frames_np_start_timestamp = None
                            self.frames_np = np.array([], dtype=np.float32)
                        else:
                            logger.debug(f"🥳 当前时间与上一句的时间差: {time_diff:.2f}s,继续增加缓冲区")
                    
            except queue.Empty:
                pass

    def _transcription_processing_loop(self) -> None:
        """主转录处理循环"""
        frame_epoch = 1

        while not self._translate_thread_stop.is_set():
            
            if len(self.frames_np) ==0:
                time.sleep(0.01)
                continue

            with self.lock:
                if len(self.full_segments_queue) > 0:
                    audio_buffer = self.full_segments_queue.pop()
                    partial = False
                else:
                    audio_buffer = self.frames_np[:int(frame_epoch * 1.5 * self.sample_rate)].copy()# 获取 1.5s * epoch 个音频长度
                    partial = True
            
            if len(audio_buffer) < int(self.sample_rate):
                silence_audio = np.zeros(self.sample_rate, dtype=np.float32)
                silence_audio[-len(audio_buffer):] = audio_buffer
                audio_buffer = silence_audio

            logger.debug(f"audio buffer size: {len(audio_buffer) / self.sample_rate:.2f}s")
            meta_item = self._transcribe_audio(audio_buffer)
            segments = meta_item.segments
            logger.debug(f"Segments: {segments}")
            segments = filter_words(segments)

            if len(segments):
                seg_text = self.text_separator.join(seg.text for seg in segments)
                result = TransResult(
                    seg_id=self.row_number,
                    context=seg_text,
                    from_=self.source_language,
                    to=self.target_language,
                    tran_content=self._translate_text_large(seg_text),
                    partial=partial
                )
                self._send_result_to_client(result)
                if not partial:
                    self.row_number += 1
                    frame_epoch = 1
                else:
                    frame_epoch += 1

    


    def _transcribe_audio(self, audio_buffer: np.ndarray)->MetaItem:
        """转录音频并返回转录片段"""
        log_block("Audio buffer length", f"{audio_buffer.shape[0]/self.sample_rate:.2f}", "s")
        start_time = time.perf_counter()

        result = self._translate_pipe.transcribe(audio_buffer.tobytes(), self.source_language)
        segments = result.segments
        time_diff = (time.perf_counter() - start_time)
        logger.debug(f"📝 transcribe Segments: {segments} ")
        log_block("📝 transcribe output", f"{self.text_separator.join(seg.text for seg in segments)}", "")
        log_block("📝 transcribe time", f"{time_diff:.3f}", "s")
        self._transcribe_time_cost = round(time_diff, 3)
        return result

    def _translate_text(self, text: str) -> str:
        """将文本翻译为目标语言"""
        if not text.strip():
            return ""

        log_block("🐧 Translation input ", f"{text}")
        start_time = time.perf_counter()

        result = self._translate_pipe.translate(text, self.source_language, self.target_language)
        translated_text = result.translate_content
        time_diff = (time.perf_counter() - start_time)
        log_block("🐧 Translation time ", f"{time_diff:.3f}", "s")
        log_block("🐧 Translation out ", f"{translated_text}")
        self._translate_time_cost = round(time_diff, 3)
        return translated_text

    def _translate_text_large(self, text: str) -> str:
        """将文本翻译为目标语言"""
        if not text.strip():
            return ""

        log_block("Translation input", f"{text}")
        start_time = time.perf_counter()

        result = self._translate_pipe.translate_large(text, self.source_language, self.target_language)
        translated_text = result.translate_content
        time_diff = (time.perf_counter() - start_time)
        log_block("Translation large model time ", f"{time_diff:.3f}", "s")
        log_block("Translation large model output", f"{translated_text}")
        self._translate_time_cost = round(time_diff, 3)
        return translated_text


    def _send_result_to_client(self, result: TransResult) -> None:
        """发送翻译结果到客户端"""
        try:
            message = Message(result=result, request_id=self.client_uid).model_dump_json(by_alias=True)
            coro = self.websocket.send_text(message)
            future = asyncio.run_coroutine_threadsafe(coro, self.loop)
            future.add_done_callback(lambda fut: fut.exception() and self.stop())
        except RuntimeError:
            self.stop()
        except Exception as e:
            logger.error(f"Error sending result to client: {e}")

    def stop(self) -> None:
        """停止所有处理线程并清理资源"""
        self._translate_thread_stop.set()
        self._frame_processing_thread_stop.set()
        if config.SAVE_DATA_SAVE:
            self._save_task_stop.set()
        logger.info(f"Stopping transcription service for client: {self.client_uid}")