File size: 10,293 Bytes
996895d c0447ed 0c38083 b2de29e 0c38083 93d2288 ca5d527 93d2288 31ad35a 5518c26 6f13b8c 07f9733 31ad35a 9be4c60 586518f 0c38083 586518f 996895d 586518f 6696134 0c38083 8be1cbc 6696134 0c38083 b67c020 0c38083 6696134 0c38083 6696134 0c38083 8be1cbc 0c38083 996895d b67c020 0c38083 996895d b2de29e ca5d527 98c9c23 9be4c60 ca5d527 9be4c60 0c38083 ab22d1a 0c38083 93d2288 996895d 31ad35a 93d2288 1c6c20c 93d2288 01e617c 996895d b67c020 01e617c 93d2288 01e617c 93d2288 b2de29e 6696134 0c38083 c0447ed ca5d527 9be4c60 0c38083 c0447ed ca5d527 9be4c60 ca5d527 9be4c60 ca5d527 9be4c60 98c9c23 93a0cf7 9be4c60 996895d 9be4c60 c0447ed 2a2d4ba ca5d527 93a0cf7 9be4c60 ca5d527 e19aebc 98c9c23 e19aebc ca5d527 9be4c60 98c9c23 9be4c60 98c9c23 9be4c60 ca5d527 b12f0fd ca5d527 5518c26 9be4c60 ca5d527 d3badad 9be4c60 996895d 98c9c23 d3badad 996895d 4499bab 9be4c60 31ad35a 0c38083 1f45d99 1c6c20c 0c38083 93d2288 1c6c20c 31ad35a 0c38083 8be1cbc c6b44fd 1f45d99 8be1cbc 0c38083 93d2288 c6b44fd 93d2288 c0447ed 8be1cbc 2aed46a 8be1cbc 2aed46a 8be1cbc 2aed46a 93d2288 2aed46a 93d2288 2aed46a e046f39 0c38083 ab22d1a 0c38083 730ea7e 0c38083 ab22d1a 0c38083 586518f 0c38083 ab22d1a 0c38083 01e617c 8be1cbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import queue
import threading
import time
from logging import getLogger
import asyncio
import numpy as np
import config
import collections
from api_model import TransResult, Message, DebugResult
from .utils import log_block, save_to_wave, TestDataWriter, filter_words
from .translatepipes import TranslatePipes
from transcribe.pipelines import MetaItem
logger = getLogger("TranscriptionService")
def _get_text_separator(language: str) -> str:
"""根据语言返回适当的文本分隔符"""
return "" if language == "zh" else " "
def _start_thread(target_function) -> threading.Thread:
"""启动守护线程执行指定函数"""
thread = threading.Thread(target=target_function)
thread.daemon = True
thread.start()
return thread
class WhisperTranscriptionService:
"""
Whisper语音转录服务类,处理音频流转录和翻译
"""
SERVER_READY = "SERVER_READY"
DISCONNECT = "DISCONNECT"
def __init__(self, websocket, pipe: TranslatePipes, language=None, dst_lang=None, client_uid=None):
print('>>>>>>>>>>>>>>>> init service >>>>>>>>>>>>>>>>>>>>>>')
print('src_lang:', language)
self.source_language = language # 源语言
self.target_language = dst_lang # 目标翻译语言
self.client_uid = client_uid
# 转录结果稳定性管理
self.websocket = websocket
self._translate_pipe = pipe
# 音频处理相关
self.sample_rate = config.SAMPLE_RATE
self.lock = threading.Lock()
# 文本分隔符,根据语言设置
self.text_separator = _get_text_separator(language)
self.loop = asyncio.get_event_loop()
# 原始音频队列
self._frame_queue = queue.Queue()
# 音频队列缓冲区
self.frames_np = np.array([], dtype=np.float32)
self.frames_np_start_timestamp = None
# 完整音频队列
self.full_segments_queue = collections.deque()
# 启动处理线程
self._translate_thread_stop = threading.Event()
self._frame_processing_thread_stop = threading.Event()
self.translate_thread = _start_thread(self._transcription_processing_loop)
self.frame_processing_thread = _start_thread(self._frame_processing_loop)
self.row_number = 0
# for test
self._transcribe_time_cost = 0.
self._translate_time_cost = 0.
if config.SAVE_DATA_SAVE:
self._save_task_stop = threading.Event()
self._save_queue = queue.Queue()
self._save_thread = _start_thread(self.save_data_loop)
def save_data_loop(self):
writer = TestDataWriter()
while not self._save_task_stop.is_set():
test_data = self._save_queue.get()
writer.write(test_data) # Save test_data to CSV
def add_frames(self, frame_np: np.ndarray) -> None:
"""添加音频帧到处理队列"""
self._frame_queue.put(frame_np)
def _apply_voice_activity_detection(self, frame_np:np.array):
"""应用语音活动检测来优化音频缓冲区"""
processed_audio = self._translate_pipe.voice_detect(frame_np.tobytes())
speech_audio = np.frombuffer(processed_audio.audio, dtype=np.float32)
speech_status = processed_audio.speech_status
return speech_audio, speech_status
def _frame_processing_loop(self) -> None:
"""从队列获取音频帧并合并到缓冲区"""
while not self._frame_processing_thread_stop.is_set():
try:
frame_np = self._frame_queue.get(timeout=0.1)
frame_np, speech_status = self._apply_voice_activity_detection(frame_np)
if frame_np is None:
continue
with self.lock:
if speech_status == "START" and self.frames_np_start_timestamp is None:
self.frames_np_start_timestamp = time.time()
# 添加音频到音频缓冲区
self.frames_np = np.append(self.frames_np, frame_np)
if len(self.frames_np) >= self.sample_rate * config.MAX_SPEECH_DURATION_S:
audio_array=self.frames_np.copy()
self.full_segments_queue.appendleft(audio_array) # 根据时间是否满足三秒长度 来整合音频块
self.frames_np_start_timestamp = time.time()
self.frames_np = np.array([], dtype=np.float32)
elif speech_status == "END" and len(self.frames_np) > 0 and self.frames_np_start_timestamp:
time_diff = time.time() - self.frames_np_start_timestamp
if time_diff >= config.FRAME_SCOPE_TIME_THRESHOLD:
audio_array=self.frames_np.copy()
self.full_segments_queue.appendleft(audio_array) # 根据时间是否满足三秒长度 来整合音频块
self.frames_np_start_timestamp = None
self.frames_np = np.array([], dtype=np.float32)
else:
logger.debug(f"🥳 当前时间与上一句的时间差: {time_diff:.2f}s,继续增加缓冲区")
except queue.Empty:
pass
def _transcription_processing_loop(self) -> None:
"""主转录处理循环"""
frame_epoch = 1
while not self._translate_thread_stop.is_set():
if len(self.frames_np) ==0:
time.sleep(0.01)
continue
with self.lock:
if len(self.full_segments_queue) > 0:
audio_buffer = self.full_segments_queue.pop()
partial = False
else:
audio_buffer = self.frames_np[:int(frame_epoch * 1.5 * self.sample_rate)].copy()# 获取 1.5s * epoch 个音频长度
partial = True
if len(audio_buffer) < int(self.sample_rate):
silence_audio = np.zeros(self.sample_rate, dtype=np.float32)
silence_audio[-len(audio_buffer):] = audio_buffer
audio_buffer = silence_audio
logger.debug(f"audio buffer size: {len(audio_buffer) / self.sample_rate:.2f}s")
meta_item = self._transcribe_audio(audio_buffer)
segments = meta_item.segments
logger.debug(f"Segments: {segments}")
segments = filter_words(segments)
if len(segments):
seg_text = self.text_separator.join(seg.text for seg in segments)
result = TransResult(
seg_id=self.row_number,
context=seg_text,
from_=self.source_language,
to=self.target_language,
tran_content=self._translate_text_large(seg_text),
partial=partial
)
self._send_result_to_client(result)
if not partial:
self.row_number += 1
frame_epoch = 1
else:
frame_epoch += 1
def _transcribe_audio(self, audio_buffer: np.ndarray)->MetaItem:
"""转录音频并返回转录片段"""
log_block("Audio buffer length", f"{audio_buffer.shape[0]/self.sample_rate:.2f}", "s")
start_time = time.perf_counter()
result = self._translate_pipe.transcribe(audio_buffer.tobytes(), self.source_language)
segments = result.segments
time_diff = (time.perf_counter() - start_time)
logger.debug(f"📝 transcribe Segments: {segments} ")
log_block("📝 transcribe output", f"{self.text_separator.join(seg.text for seg in segments)}", "")
log_block("📝 transcribe time", f"{time_diff:.3f}", "s")
self._transcribe_time_cost = round(time_diff, 3)
return result
def _translate_text(self, text: str) -> str:
"""将文本翻译为目标语言"""
if not text.strip():
return ""
log_block("🐧 Translation input ", f"{text}")
start_time = time.perf_counter()
result = self._translate_pipe.translate(text, self.source_language, self.target_language)
translated_text = result.translate_content
time_diff = (time.perf_counter() - start_time)
log_block("🐧 Translation time ", f"{time_diff:.3f}", "s")
log_block("🐧 Translation out ", f"{translated_text}")
self._translate_time_cost = round(time_diff, 3)
return translated_text
def _translate_text_large(self, text: str) -> str:
"""将文本翻译为目标语言"""
if not text.strip():
return ""
log_block("Translation input", f"{text}")
start_time = time.perf_counter()
result = self._translate_pipe.translate_large(text, self.source_language, self.target_language)
translated_text = result.translate_content
time_diff = (time.perf_counter() - start_time)
log_block("Translation large model time ", f"{time_diff:.3f}", "s")
log_block("Translation large model output", f"{translated_text}")
self._translate_time_cost = round(time_diff, 3)
return translated_text
def _send_result_to_client(self, result: TransResult) -> None:
"""发送翻译结果到客户端"""
try:
message = Message(result=result, request_id=self.client_uid).model_dump_json(by_alias=True)
coro = self.websocket.send_text(message)
future = asyncio.run_coroutine_threadsafe(coro, self.loop)
future.add_done_callback(lambda fut: fut.exception() and self.stop())
except RuntimeError:
self.stop()
except Exception as e:
logger.error(f"Error sending result to client: {e}")
def stop(self) -> None:
"""停止所有处理线程并清理资源"""
self._translate_thread_stop.set()
self._frame_processing_thread_stop.set()
if config.SAVE_DATA_SAVE:
self._save_task_stop.set()
logger.info(f"Stopping transcription service for client: {self.client_uid}")
|