File size: 14,783 Bytes
586518f fcd58ee 586518f fcd58ee 586518f fcd58ee 586518f fcd58ee 586518f fcd58ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import json
import logging
import threading
import time
import config
import librosa
import numpy as np
import soundfile
from pywhispercpp.model import Model
logging.basicConfig(level=logging.INFO)
class ServeClientBase(object):
RATE = 16000
SERVER_READY = "SERVER_READY"
DISCONNECT = "DISCONNECT"
def __init__(self, client_uid, websocket):
self.client_uid = client_uid
self.websocket = websocket
self.frames = b""
self.timestamp_offset = 0.0
self.frames_np = None
self.frames_offset = 0.0
self.text = []
self.current_out = ''
self.prev_out = ''
self.t_start = None
self.exit = False
self.same_output_count = 0
self.show_prev_out_thresh = 5 # if pause(no output from whisper) show previous output for 5 seconds
self.add_pause_thresh = 3 # add a blank to segment list as a pause(no speech) for 3 seconds
self.transcript = []
self.send_last_n_segments = 10
# text formatting
self.pick_previous_segments = 2
# threading
self.lock = threading.Lock()
def speech_to_text(self):
raise NotImplementedError
def transcribe_audio(self):
raise NotImplementedError
def handle_transcription_output(self):
raise NotImplementedError
def add_frames(self, frame_np):
"""
Add audio frames to the ongoing audio stream buffer.
This method is responsible for maintaining the audio stream buffer, allowing the continuous addition
of audio frames as they are received. It also ensures that the buffer does not exceed a specified size
to prevent excessive memory usage.
If the buffer size exceeds a threshold (45 seconds of audio data), it discards the oldest 30 seconds
of audio data to maintain a reasonable buffer size. If the buffer is empty, it initializes it with the provided
audio frame. The audio stream buffer is used for real-time processing of audio data for transcription.
Args:
frame_np (numpy.ndarray): The audio frame data as a NumPy array.
"""
self.lock.acquire()
if self.frames_np is not None and self.frames_np.shape[0] > 45 * self.RATE:
self.frames_offset += 30.0
self.frames_np = self.frames_np[int(30 * self.RATE):]
# check timestamp offset(should be >= self.frame_offset)
# this basically means that there is no speech as timestamp offset hasnt updated
# and is less than frame_offset
if self.timestamp_offset < self.frames_offset:
self.timestamp_offset = self.frames_offset
if self.frames_np is None:
self.frames_np = frame_np.copy()
else:
self.frames_np = np.concatenate((self.frames_np, frame_np), axis=0)
self.lock.release()
def clip_audio_if_no_valid_segment(self):
"""
Update the timestamp offset based on audio buffer status.
Clip audio if the current chunk exceeds 30 seconds, this basically implies that
no valid segment for the last 30 seconds from whisper
"""
with self.lock:
if self.frames_np[int((self.timestamp_offset - self.frames_offset) * self.RATE):].shape[0] > 25 * self.RATE:
duration = self.frames_np.shape[0] / self.RATE
self.timestamp_offset = self.frames_offset + duration - 5
def get_audio_chunk_for_processing(self):
"""
Retrieves the next chunk of audio data for processing based on the current offsets.
Calculates which part of the audio data should be processed next, based on
the difference between the current timestamp offset and the frame's offset, scaled by
the audio sample rate (RATE). It then returns this chunk of audio data along with its
duration in seconds.
Returns:
tuple: A tuple containing:
- input_bytes (np.ndarray): The next chunk of audio data to be processed.
- duration (float): The duration of the audio chunk in seconds.
"""
with self.lock:
samples_take = max(0, (self.timestamp_offset - self.frames_offset) * self.RATE)
input_bytes = self.frames_np[int(samples_take):].copy()
duration = input_bytes.shape[0] / self.RATE
return input_bytes, duration
def prepare_segments(self, last_segment=None):
"""
Prepares the segments of transcribed text to be sent to the client.
This method compiles the recent segments of transcribed text, ensuring that only the
specified number of the most recent segments are included. It also appends the most
recent segment of text if provided (which is considered incomplete because of the possibility
of the last word being truncated in the audio chunk).
Args:
last_segment (str, optional): The most recent segment of transcribed text to be added
to the list of segments. Defaults to None.
Returns:
list: A list of transcribed text segments to be sent to the client.
"""
segments = []
if len(self.transcript) >= self.send_last_n_segments:
segments = self.transcript[-self.send_last_n_segments:].copy()
else:
segments = self.transcript.copy()
if last_segment is not None:
segments = segments + [last_segment]
logging.info(f"{segments}")
return segments
def get_audio_chunk_duration(self, input_bytes):
"""
Calculates the duration of the provided audio chunk.
Args:
input_bytes (numpy.ndarray): The audio chunk for which to calculate the duration.
Returns:
float: The duration of the audio chunk in seconds.
"""
return input_bytes.shape[0] / self.RATE
def send_transcription_to_client(self, segments):
"""
Sends the specified transcription segments to the client over the websocket connection.
This method formats the transcription segments into a JSON object and attempts to send
this object to the client. If an error occurs during the send operation, it logs the error.
Returns:
segments (list): A list of transcription segments to be sent to the client.
"""
try:
self.websocket.send(
json.dumps({
"uid": self.client_uid,
"segments": segments,
})
)
except Exception as e:
logging.error(f"[ERROR]: Sending data to client: {e}")
def disconnect(self):
"""
Notify the client of disconnection and send a disconnect message.
This method sends a disconnect message to the client via the WebSocket connection to notify them
that the transcription service is disconnecting gracefully.
"""
self.websocket.send(json.dumps({
"uid": self.client_uid,
"message": self.DISCONNECT
}))
def cleanup(self):
"""
Perform cleanup tasks before exiting the transcription service.
This method performs necessary cleanup tasks, including stopping the transcription thread, marking
the exit flag to indicate the transcription thread should exit gracefully, and destroying resources
associated with the transcription process.
"""
logging.info("Cleaning up.")
self.exit = True
class ServeClientWhisperCPP(ServeClientBase):
SINGLE_MODEL = None
SINGLE_MODEL_LOCK = threading.Lock()
def __init__(self, websocket, language=None, client_uid=None,
single_model=False):
"""
Initialize a ServeClient instance.
The Whisper model is initialized based on the client's language and device availability.
The transcription thread is started upon initialization. A "SERVER_READY" message is sent
to the client to indicate that the server is ready.
Args:
websocket (WebSocket): The WebSocket connection for the client.
language (str, optional): The language for transcription. Defaults to None.
client_uid (str, optional): A unique identifier for the client. Defaults to None.
single_model (bool, optional): Whether to instantiate a new model for each client connection. Defaults to False.
"""
super().__init__(client_uid, websocket)
self.language = language
self.eos = False
if single_model:
if ServeClientWhisperCPP.SINGLE_MODEL is None:
self.create_model()
ServeClientWhisperCPP.SINGLE_MODEL = self.transcriber
else:
self.transcriber = ServeClientWhisperCPP.SINGLE_MODEL
else:
self.create_model()
# threading
logging.info('Create a thread to process audio.')
self.trans_thread = threading.Thread(target=self.speech_to_text)
self.trans_thread.start()
self.websocket.send(json.dumps({
"uid": self.client_uid,
"message": self.SERVER_READY,
"backend": "pywhispercpp"
}))
def create_model(self, warmup=True):
"""
Instantiates a new model, sets it as the transcriber and does warmup if desired.
"""
self.transcriber = Model(model=config.WHISPER_MODEL, models_dir=config.MODEL_DIR)
if warmup:
self.warmup()
def warmup(self, warmup_steps=1):
"""
Warmup TensorRT since first few inferences are slow.
Args:
warmup_steps (int): Number of steps to warm up the model for.
"""
logging.info("[INFO:] Warming up whisper.cpp engine..")
mel, _, = soundfile.read("assets/jfk.flac")
for i in range(warmup_steps):
self.transcriber.transcribe(mel, print_progress=False)
def set_eos(self, eos):
"""
Sets the End of Speech (EOS) flag.
Args:
eos (bool): The value to set for the EOS flag.
"""
self.lock.acquire()
self.eos = eos
self.lock.release()
def handle_transcription_output(self, last_segment, duration):
"""
Handle the transcription output, updating the transcript and sending data to the client.
Args:
last_segment (str): The last segment from the whisper output which is considered to be incomplete because
of the possibility of word being truncated.
duration (float): Duration of the transcribed audio chunk.
"""
segments = self.prepare_segments({"text": last_segment})
self.send_transcription_to_client(segments)
if self.eos:
self.update_timestamp_offset(last_segment, duration)
def transcribe_audio(self, input_bytes):
"""
Transcribe the audio chunk and send the results to the client.
Args:
input_bytes (np.array): The audio chunk to transcribe.
"""
if ServeClientWhisperCPP.SINGLE_MODEL:
ServeClientWhisperCPP.SINGLE_MODEL_LOCK.acquire()
logging.info(f"[pywhispercpp:] Processing audio with duration: {input_bytes.shape[0] / self.RATE}")
mel = input_bytes
duration = librosa.get_duration(y=input_bytes, sr=self.RATE)
if self.language == "zh":
prompt = '以下是简体中文普通话的句子。'
else:
prompt = 'The following is an English sentence.'
segments = self.transcriber.transcribe(
mel,
language=self.language,
initial_prompt=prompt,
token_timestamps=True,
# max_len=max_len,
print_progress=False
)
text = []
for segment in segments:
content = segment.text
text.append(content)
last_segment = ' '.join(text)
logging.info(f"[pywhispercpp:] Last segment: {last_segment}")
if ServeClientWhisperCPP.SINGLE_MODEL:
ServeClientWhisperCPP.SINGLE_MODEL_LOCK.release()
if last_segment:
self.handle_transcription_output(last_segment, duration)
def update_timestamp_offset(self, last_segment, duration):
"""
Update timestamp offset and transcript.
Args:
last_segment (str): Last transcribed audio from the whisper model.
duration (float): Duration of the last audio chunk.
"""
if not len(self.transcript):
self.transcript.append({"text": last_segment + " "})
elif self.transcript[-1]["text"].strip() != last_segment:
self.transcript.append({"text": last_segment + " "})
logging.info(f'Transcript list context: {self.transcript}')
with self.lock:
self.timestamp_offset += duration
def speech_to_text(self):
"""
Process an audio stream in an infinite loop, continuously transcribing the speech.
This method continuously receives audio frames, performs real-time transcription, and sends
transcribed segments to the client via a WebSocket connection.
If the client's language is not detected, it waits for 30 seconds of audio input to make a language prediction.
It utilizes the Whisper ASR model to transcribe the audio, continuously processing and streaming results. Segments
are sent to the client in real-time, and a history of segments is maintained to provide context.Pauses in speech
(no output from Whisper) are handled by showing the previous output for a set duration. A blank segment is added if
there is no speech for a specified duration to indicate a pause.
Raises:
Exception: If there is an issue with audio processing or WebSocket communication.
"""
while True:
if self.exit:
logging.info("Exiting speech to text thread")
break
if self.frames_np is None:
time.sleep(0.02) # wait for any audio to arrive
continue
self.clip_audio_if_no_valid_segment()
input_bytes, duration = self.get_audio_chunk_for_processing()
if duration < 1:
continue
try:
input_sample = input_bytes.copy()
logging.info(f"[pywhispercpp:] Processing audio with duration: {duration}")
self.transcribe_audio(input_sample)
except Exception as e:
logging.error(f"[ERROR]: {e}")
|