import queue import threading import time from logging import getLogger import asyncio import numpy as np import config import collections from api_model import TransResult, Message from .utils import log_block, start_thread, get_text_separator, filter_words from .processing import ProcessingPipes from .pipelines import MetaItem logger = getLogger("TranscriptionService") class WhisperTranscriptionService: """ Whisper语音转录服务类,处理音频流转录和翻译 """ def __init__(self, websocket, pipe: ProcessingPipes, language=None, dst_lang=None, client_uid=None): print('>>>>>>>>>>>>>>>> init service >>>>>>>>>>>>>>>>>>>>>>') print('src_lang:', language) self.source_language = language # 源语言 self.target_language = dst_lang # 目标翻译语言 self.client_uid = client_uid # 转录结果稳定性管理 self.websocket = websocket self.translate_pipe = pipe # 音频处理相关 self.sample_rate = config.SAMPLE_RATE self.frame_lock = threading.Lock() self.segment_lock = threading.Lock() # 文本分隔符,根据语言设置 self.text_separator = get_text_separator(language) self.loop = asyncio.get_event_loop() # 原始音频队列 self.frame_queue = queue.Queue() # 音频队列缓冲区 self.frames_np = np.array([], dtype=np.float32) # 音频开始的时间点 用于约束最小断句时间 self.frames_np_start_timestamp = None # 完整音频队列 self.full_segments_queue = collections.deque() # 启动处理线程 self._stop = threading.Event() self.translate_thread = start_thread(self._transcription_processing_loop) self.frame_processing_thread = start_thread(self._read_frame_processing_loop) # 行号 self.row_number = 0 def add_frames(self, frame_np: np.ndarray) -> None: """添加音频帧到处理队列""" self.frame_queue.put(frame_np) def _apply_voice_activity_detection(self, frame_np:np.array): """应用语音活动检测来优化音频缓冲区""" processed_audio = self.translate_pipe.voice_detect(frame_np.tobytes()) speech_audio = np.frombuffer(processed_audio.audio, dtype=np.float32) speech_status = processed_audio.speech_status return speech_audio, speech_status def _read_frame_processing_loop(self) -> None: """从队列获取音频帧并合并到缓冲区""" while not self._stop.is_set(): frame_np = self.frame_queue.get() frame_np, speech_status = self._apply_voice_activity_detection(frame_np) if frame_np is None: continue with self.frame_lock: self.frames_np = np.append(self.frames_np, frame_np) # 音频开始时间节点 用来统计时间来 达到最小断句时间长度 if speech_status == "START" and self.frames_np_start_timestamp is None: self.frames_np_start_timestamp = time.time() # 音频最长时间缓冲区限制,超过了就强制断句 if len(self.frames_np) >= self.sample_rate * config.MAX_SPEECH_DURATION_S: audio_array=self.frames_np.copy() with self.segment_lock: self.full_segments_queue.appendleft(audio_array) # 根据时间是否满足三秒长度 来整合音频块 self.frames_np_start_timestamp = time.time() with self.frame_lock: self.frames_np = np.array([], dtype=np.float32) # 音频结束信号的时候 整合当前缓冲区 # START -- END -- START -- END 通常 # START -- END -- END end块带有音频信息的通常是4096内断的一个短音 if speech_status == "END" and len(self.frames_np) > 0 and self.frames_np_start_timestamp: time_diff = time.time() - self.frames_np_start_timestamp if time_diff >= config.FRAME_SCOPE_TIME_THRESHOLD: with self.frame_lock: audio_array=self.frames_np.copy() self.frames_np = np.array([], dtype=np.float32) with self.segment_lock: self.full_segments_queue.appendleft(audio_array) # 根据时间是否满足三秒长度 来整合音频块 logger.debug(f"🥳 增加整句到队列") self.frames_np_start_timestamp = None else: logger.debug(f"🥳 当前时间与上一句的时间差: {time_diff:.2f}s,继续保留在缓冲区") def _transcription_processing_loop(self) -> None: """主转录处理循环""" frame_epoch = 1 while not self._stop.is_set(): time.sleep(0.1) with self.segment_lock: segment_length = len(self.full_segments_queue) if segment_length > 0: audio_buffer = self.full_segments_queue.pop() partial = False else: with self.frame_lock: if len(self.frames_np) ==0: continue audio_buffer = self.frames_np[:int(frame_epoch * 1.5 * self.sample_rate)].copy()# 获取 1.5s * epoch 个音频长度 partial = True logger.debug(f"full_segments_queue size: {segment_length}") logger.debug(f"audio buffer size: {len(self.frames_np) / self.sample_rate:.2f}s") if len(audio_buffer) < int(self.sample_rate): # Add a small buffer (e.g., 10ms worth of samples) to be safe padding_samples = int(self.sample_rate * 0.01) # e.g., 160 samples for 10ms at 16kHz target_length = self.sample_rate + padding_samples silence_audio = np.zeros(target_length, dtype=np.float32) # Ensure we don't try to copy more data than exists if audio_buffer is very short copy_length = min(len(audio_buffer), target_length) silence_audio[-copy_length:] = audio_buffer[-copy_length:] # Copy from the end of audio_buffer audio_buffer = silence_audio meta_item = self._transcribe_audio(audio_buffer) segments = meta_item.segments logger.debug(f"Segments: {segments}") segments = filter_words(segments) if len(segments): seg_text = self.text_separator.join(seg.text for seg in segments) if seg_text.strip() in ['', '.', '-']: # 过滤空字符 continue # 整行 if not partial: translated_content = self._translate_text_large(seg_text) self.row_number += 1 frame_epoch = 1 else: translated_content = self._translate_text(seg_text) frame_epoch += 1 result = TransResult( seg_id=self.row_number, context=seg_text, from_=self.source_language, to=self.target_language, tran_content=translated_content, partial=partial ) self._send_result_to_client(result) def _transcribe_audio(self, audio_buffer: np.ndarray)->MetaItem: """转录音频并返回转录片段""" log_block("Audio buffer length", f"{audio_buffer.shape[0]/self.sample_rate:.2f}", "s") result = self.translate_pipe.transcribe(audio_buffer.tobytes(), self.source_language) log_block("📝 transcribe output", f"{self.text_separator.join(seg.text for seg in result.segments)}", "") return result def _translate_text(self, text: str) -> str: """将文本翻译为目标语言""" if not text.strip(): return "" log_block("🐧 Translation input ", f"{text}") result = self.translate_pipe.translate(text, self.source_language, self.target_language) translated_text = result.translate_content log_block("🐧 Translation out ", f"{translated_text}") return translated_text def _translate_text_large(self, text: str) -> str: """将文本翻译为目标语言""" if not text.strip(): return "" log_block("Translation input", f"{text}") result = self.translate_pipe.translate_large(text, self.source_language, self.target_language) translated_text = result.translate_content log_block("Translation large model output", f"{translated_text}") return translated_text def _send_result_to_client(self, result: TransResult) -> None: """发送翻译结果到客户端""" try: message = Message(result=result, request_id=self.client_uid).model_dump_json(by_alias=True) coro = self.websocket.send_text(message) future = asyncio.run_coroutine_threadsafe(coro, self.loop) future.add_done_callback(lambda fut: fut.exception() and self.stop()) except RuntimeError: self.stop() except Exception as e: logger.error(f"Error sending result to client: {e}") def stop(self) -> None: """停止所有处理线程并清理资源""" self._stop.set() logger.info(f"Stopping transcription service for client: {self.client_uid}")