Update README.md
Browse files
README.md
CHANGED
|
@@ -25,18 +25,160 @@ pipeline_tag: feature-extraction
|
|
| 25 |
library_name: tf
|
| 26 |
---
|
| 27 |
|
| 28 |
-
# bai-64 Mind
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
##
|
| 35 |
|
| 36 |
-
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
library_name: tf
|
| 26 |
---
|
| 27 |
|
| 28 |
+
# bai-64 Mind | EEG-to-Text Model [BETA]🧠✍️
|
| 29 |
|
| 30 |
+
Classify imagined speech commands from EEG brain signals using deep learning.
|
| 31 |
|
| 32 |
+

|
| 33 |
+

|
| 34 |
+

|
| 35 |
|
| 36 |
+
## Overview
|
| 37 |
|
| 38 |
+
This project enables Brain-Computer Interface (BCI) applications by decoding imagined directional commands ("Up", "Down", "Left", "Right") from EEG brain signals. Users think about a direction without speaking, and the system predicts their intended command.
|
| 39 |
|
| 40 |
+
## Quick Start
|
| 41 |
|
| 42 |
+
### Installation
|
| 43 |
|
| 44 |
+
```bash
|
| 45 |
+
pip install -r requirements.txt
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
### Basic Usage
|
| 49 |
+
|
| 50 |
+
```python
|
| 51 |
+
import numpy as np
|
| 52 |
+
from tensorflow import keras
|
| 53 |
+
|
| 54 |
+
# Load pre-trained model
|
| 55 |
+
model = keras.models.load_model('path/to/your/model.h5')
|
| 56 |
+
|
| 57 |
+
# Your EEG data (1 second, 64 channels, 250 Hz sampling)
|
| 58 |
+
eeg_data = np.random.randn(250, 64) # Replace with real EEG
|
| 59 |
+
|
| 60 |
+
# Make prediction
|
| 61 |
+
prediction = model.predict(eeg_data.reshape(1, 250, 64))
|
| 62 |
+
classes = ['Up', 'Down', 'Left', 'Right']
|
| 63 |
+
predicted_command = classes[np.argmax(prediction)]
|
| 64 |
+
|
| 65 |
+
print(f"Predicted command: {predicted_command}")
|
| 66 |
+
print(f"Confidence: {np.max(prediction):.3f}")
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
## Real-Time BCI Application
|
| 70 |
+
|
| 71 |
+
```python
|
| 72 |
+
from analysis import InnerSpeechAnalyzer
|
| 73 |
+
|
| 74 |
+
# Initialize predictor
|
| 75 |
+
analyzer = InnerSpeechAnalyzer('path/to/your/model.h5')
|
| 76 |
+
predictor = analyzer.create_real_time_predictor()
|
| 77 |
+
|
| 78 |
+
# Real-time loop
|
| 79 |
+
while True:
|
| 80 |
+
eeg_data = capture_eeg_signal() # Your EEG acquisition function
|
| 81 |
+
command, confidence = predictor.predict_thought(eeg_data)
|
| 82 |
+
|
| 83 |
+
if confidence > 0.8:
|
| 84 |
+
execute_command(command) # Your command execution
|
| 85 |
+
print(f"Executing: {command}")
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
## Hardware Requirements
|
| 89 |
+
|
| 90 |
+
### EEG Device
|
| 91 |
+
- **Channels**: 64 Channels (10-20 system)
|
| 92 |
+
- **Sampling Rate**: 250+ Hz
|
| 93 |
+
- **Impedance**: <5kΩ
|
| 94 |
+
- **Bandwidth**: 0.5-100 Hz
|
| 95 |
+
|
| 96 |
+
### Recommended Devices
|
| 97 |
+
- OpenBCI Cyton + Daisy (16+ channels) (64 channels recommended)
|
| 98 |
+
- Emotiv EPOC X (14 channels) (64 channels recommended)
|
| 99 |
+
- g.tec g.USBamp (Professional) (64 channels recommended)
|
| 100 |
+
|
| 101 |
+
## Applications
|
| 102 |
+
|
| 103 |
+
- 🦽 **Assistive Technology**: Control for paralyzed patients
|
| 104 |
+
- 🎮 **Gaming**: Mind-controlled games and VR
|
| 105 |
+
- 🤖 **Robotics**: Brain-controlled robot navigation
|
| 106 |
+
- 💻 **Silent Computing**: Hands-free computer control
|
| 107 |
+
- 🧪 **Research**: Neuroscience and BCI studies
|
| 108 |
+
|
| 109 |
+
## Data Format
|
| 110 |
+
|
| 111 |
+
Your EEG data should be:
|
| 112 |
+
- **Shape**: (250, 64) per trial
|
| 113 |
+
- **Duration**: 1 second recording
|
| 114 |
+
- **Channels**: 64 EEG electrodes
|
| 115 |
+
- **Sampling**: 250 Hz
|
| 116 |
+
- **Classes**: ["Up", "Down", "Left", "Right"]
|
| 117 |
+
|
| 118 |
+
## Features
|
| 119 |
+
|
| 120 |
+
✅ **Ready-to-use** pre-trained model
|
| 121 |
+
✅ **Real-time prediction** for BCI applications
|
| 122 |
+
✅ **Custom training** with your own EEG data
|
| 123 |
+
✅ **Multiple architectures** (CNN-LSTM, Transformer)
|
| 124 |
+
✅ **EEG preprocessing** pipeline included
|
| 125 |
+
✅ **Cross-platform** support (Windows, macOS, Linux)
|
| 126 |
+
|
| 127 |
+
## Dependencies
|
| 128 |
+
|
| 129 |
+
```bash
|
| 130 |
+
tensorflow>=2.8.0,<3.0.0
|
| 131 |
+
scikit-learn>=1.0.0
|
| 132 |
+
numpy>=1.21.0
|
| 133 |
+
scipy>=1.7.0
|
| 134 |
+
pandas>=1.3.0
|
| 135 |
+
mne>=1.0.0
|
| 136 |
+
matplotlib>=3.5.0
|
| 137 |
+
seaborn>=0.11.0
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
## Example Use Cases
|
| 141 |
+
|
| 142 |
+
### Wheelchair Control
|
| 143 |
+
```python
|
| 144 |
+
# User thinks "forward" → wheelchair moves forward
|
| 145 |
+
# User thinks "left" → wheelchair turns left
|
| 146 |
+
```
|
| 147 |
+
|
| 148 |
+
### Smart Home
|
| 149 |
+
```python
|
| 150 |
+
# User thinks "up" → lights turn on
|
| 151 |
+
# User thinks "down" → lights turn off
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
### Gaming
|
| 155 |
+
```python
|
| 156 |
+
# User thinks "right" → character moves right
|
| 157 |
+
# Mental commands for game control
|
| 158 |
+
```
|
| 159 |
+
|
| 160 |
+
## Support
|
| 161 |
+
|
| 162 |
+
- **Web Site**: [Neurazum](https://neurazum.com)
|
| 163 |
+
- **Email**: [contact@neurazum.com](mailto:contact@neurazum.com)
|
| 164 |
+
|
| 165 |
+
## Note
|
| 166 |
+
|
| 167 |
+
**This project is in the *BETA* phase. Use at your own risk. Due to the process, low accuracy rates may be observed. In addition, since the data belongs to <span style="color: #ff8d26; "><b>Neurazum</b></span>, the function structure may change in future models.**
|
| 168 |
+
|
| 169 |
+
## License
|
| 170 |
+
|
| 171 |
+
CC-BY-NC-SA 4.0 - see [LICENSE](https://creativecommons.org/licenses/by-nc-sa/4.0/) file for details.
|
| 172 |
+
|
| 173 |
+
### Acknowledgments
|
| 174 |
+
|
| 175 |
+
1. Neurazum's own data set was used. This data set is closed source.
|
| 176 |
+
2. Nieto, N., Peterson, V., Rufiner, H. L., Kamienkowski, J. E., & Spies, R. (2021).
|
| 177 |
+
"Thinking out loud, an open access EEG-based BCI dataset for inner speech recognition."
|
| 178 |
+
bioRxiv. https://doi.org/10.1101/2021.04.19.440473
|
| 179 |
+
|
| 180 |
+
---
|
| 181 |
+
|
| 182 |
+
*Enable mind-controlled technology with EEG! 🚀*
|
| 183 |
+
|
| 184 |
+
<span style="color: #ff8d26; "><b>Neurazum</b> AI Department</span>
|