--- license: cc-by-nc-sa-4.0 language: - en - tr tags: - ai - brain - eeg - neuroscience - deeplearning - mind - bci - text - ieeg - emg - sentence - number - mind-to-text - dl - artificial-intelligence - first-of-world - eeg-to-text pipeline_tag: text-generation library_name: tf --- # bai-64 Mind | EEG-to-Text Model [BETA]๐Ÿง โœ๏ธ Classify imagined speech commands from EEG brain signals using deep learning. ![Python](https://img.shields.io/badge/Python-3.10+-blue.svg) ![TensorFlow](https://img.shields.io/badge/TensorFlow-2.x-orange.svg) ![License](https://img.shields.io/badge/License-CC_BY_NC_SA_4.0-green) ## Overview This project enables Brain-Computer Interface (BCI) applications by decoding imagined directional commands ("Up", "Down", "Left", "Right") from EEG brain signals. Users think about a direction without speaking, and the system predicts their intended command. ## Quick Start ### Installation ```bash pip install -r requirements.txt ``` ### Basic Usage ```python import numpy as np from tensorflow import keras # Load pre-trained model model = keras.models.load_model('path/to/your/model.h5') # Your EEG data (1 second, 64 channels, 250 Hz sampling) eeg_data = np.random.randn(250, 64) # Replace with real EEG # Make prediction prediction = model.predict(eeg_data.reshape(1, 250, 64)) classes = ['Up', 'Down', 'Left', 'Right'] predicted_command = classes[np.argmax(prediction)] print(f"Predicted command: {predicted_command}") print(f"Confidence: {np.max(prediction):.3f}") ``` ## Real-Time BCI Application ```python from analysis import InnerSpeechAnalyzer # Initialize predictor analyzer = InnerSpeechAnalyzer('path/to/your/model.h5') predictor = analyzer.create_real_time_predictor() # Real-time loop while True: eeg_data = capture_eeg_signal() # Your EEG acquisition function command, confidence = predictor.predict_thought(eeg_data) if confidence > 0.8: execute_command(command) # Your command execution print(f"Executing: {command}") ``` ## Hardware Requirements ### EEG Device - **Channels**: 64 Channels (10-20 system) - **Sampling Rate**: 250+ Hz - **Impedance**: <5kฮฉ - **Bandwidth**: 0.5-100 Hz ### Recommended Devices - OpenBCI Cyton + Daisy (16+ channels) (64 channels recommended) - Emotiv EPOC X (14 channels) (64 channels recommended) - g.tec g.USBamp (Professional) (64 channels recommended) ## Applications - ๐Ÿฆฝ **Assistive Technology**: Control for paralyzed patients - ๐ŸŽฎ **Gaming**: Mind-controlled games and VR - ๐Ÿค– **Robotics**: Brain-controlled robot navigation - ๐Ÿ’ป **Silent Computing**: Hands-free computer control - ๐Ÿงช **Research**: Neuroscience and BCI studies ## Data Format Your EEG data should be: - **Shape**: (250, 64) per trial - **Duration**: 1 second recording - **Channels**: 64 EEG electrodes - **Sampling**: 250 Hz - **Classes**: ["Up", "Down", "Left", "Right"] ## Features โœ… **Ready-to-use** pre-trained model โœ… **Real-time prediction** for BCI applications โœ… **Custom training** with your own EEG data โœ… **Multiple architectures** (CNN-LSTM, Transformer) โœ… **EEG preprocessing** pipeline included โœ… **Cross-platform** support (Windows, macOS, Linux) ## Dependencies ```bash tensorflow>=2.8.0,<3.0.0 scikit-learn>=1.0.0 numpy>=1.21.0 scipy>=1.7.0 pandas>=1.3.0 mne>=1.0.0 matplotlib>=3.5.0 seaborn>=0.11.0 ``` ## Example Use Cases ### Wheelchair Control ```python # User thinks "forward" โ†’ wheelchair moves forward # User thinks "left" โ†’ wheelchair turns left ``` ### Smart Home ```python # User thinks "up" โ†’ lights turn on # User thinks "down" โ†’ lights turn off ``` ### Gaming ```python # User thinks "right" โ†’ character moves right # Mental commands for game control ``` ## Support - **Web Site**: [Neurazum](https://neurazum.com) - **Email**: [contact@neurazum.com](mailto:contact@neurazum.com) ## Note **This project is in the *BETA* phase. Use at your own risk. Due to the process, low accuracy rates may be observed. In addition, since the data belongs to Neurazum, the function structure may change in future models.** ## License CC-BY-NC-SA 4.0 - see [LICENSE](https://creativecommons.org/licenses/by-nc-sa/4.0/) file for details. ### Acknowledgments 1. Neurazum's own data set was used. This data set is closed source. 2. Nieto, N., Peterson, V., Rufiner, H. L., Kamienkowski, J. E., & Spies, R. (2021). "Thinking out loud, an open access EEG-based BCI dataset for inner speech recognition." bioRxiv. https://doi.org/10.1101/2021.04.19.440473 --- *Enable mind-controlled technology with EEG! ๐Ÿš€* Neurazum AI Department