{ | |
"model_info": { | |
"name": "plant-detector", | |
"type": "ConvolutionalAutoencoder", | |
"framework": "PyTorch Lightning", | |
"task": "anomaly_detection", | |
"input_shape": [ | |
3, | |
224, | |
224 | |
], | |
"latent_dim": 128 | |
}, | |
"training": { | |
"learning_rate": 0.0001, | |
"batch_size": 32, | |
"epochs": "N/A", | |
"latent_dim": 128, | |
"dataset_size": "N/A" | |
}, | |
"metrics": { | |
"threshold": 0.5687, | |
"val_loss": "N/A", | |
"mean_reconstruction_error": "N/A", | |
"std_reconstruction_error": "N/A", | |
"anomaly_rate": "N/A" | |
}, | |
"normalization": { | |
"mean": [ | |
0.4682, | |
0.4865, | |
0.305 | |
], | |
"std": [ | |
0.2064, | |
0.1995, | |
0.1961 | |
] | |
}, | |
"usage": { | |
"threshold": 0.5687, | |
"input_preprocessing": "Resize to 224x224, normalize with mean/std", | |
"output_interpretation": "Lower reconstruction error = more plant-like" | |
} | |
} |