{ "model_info": { "name": "plant-detector", "type": "ConvolutionalAutoencoder", "framework": "PyTorch Lightning", "task": "anomaly_detection", "input_shape": [ 3, 224, 224 ], "latent_dim": 128 }, "training": { "learning_rate": 0.0001, "batch_size": 32, "epochs": "N/A", "latent_dim": 128, "dataset_size": "N/A" }, "metrics": { "threshold": 0.5687, "val_loss": "N/A", "mean_reconstruction_error": "N/A", "std_reconstruction_error": "N/A", "anomaly_rate": "N/A" }, "normalization": { "mean": [ 0.4682, 0.4865, 0.305 ], "std": [ 0.2064, 0.1995, 0.1961 ] }, "usage": { "threshold": 0.5687, "input_preprocessing": "Resize to 224x224, normalize with mean/std", "output_interpretation": "Lower reconstruction error = more plant-like" } }