File size: 2,327 Bytes
20c3539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# DeepSeek-16b-light

This is a 4-bit quantized version of the [DeepSeek Coder V2 Lite Instruct](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct) model. The quantization was performed using the bitsandbytes library with 4-bit precision to reduce the model size and memory requirements while maintaining most of its capabilities.

## Model Details

- **Original Model**: DeepSeek Coder V2 Lite Instruct
- **Quantization**: 4-bit quantization using bitsandbytes
- **Compute Type**: float16
- **Double Quantization**: Enabled
- **Size Reduction**: Approximately 75% smaller than the original model
- **Use Case**: Code generation, code completion, and programming assistance

## Usage

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Noorhan/DeepSeek-16b-light")
model = AutoModelForCausalLM.from_pretrained("Noorhan/DeepSeek-16b-light", device_map="auto")

# Example code generation
prompt = """
Write a Python function to calculate the Fibonacci sequence up to n terms.
"""

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
    inputs.input_ids,
    max_length=500,
    temperature=0.7,
    top_p=0.95,
    do_sample=True
)

response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```

## Performance and Limitations

This 4-bit quantized model:
- Requires significantly less memory than the original model
- Runs faster on consumer-grade hardware
- Has minimal quality degradation for most use cases
- May show some performance reduction for edge cases or complex reasoning tasks

## Hardware Requirements

- Recommended: GPU with at least 8GB VRAM
- Minimum: 4GB VRAM (with potential performance limitations)

## Acknowledgements

This model is a quantized version of [DeepSeek Coder V2 Lite Instruct](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct). All credits for the original model go to the DeepSeek AI team. The quantization was performed to make this powerful coding assistant more accessible for users with limited computational resources.

## License

This model inherits the license of the original DeepSeek Coder V2 Lite Instruct model. Please refer to the original model's documentation for licensing details.