--- license: apache-2.0 pipeline_tag: image-text-to-text library_name: transformers ---
AndesVL is a suite of mobile-optimized Multimodal Large Language Models (MLLMs) with **0.6B to 4B parameters**, built upon Qwen3's LLM and various visual encoders. Designed for efficient edge deployment, it achieves first-tier performance on diverse benchmarks, including those for text-rich tasks, reasoning tasks, Visual Question Answering (VQA), multi-image tasks, multilingual tasks, and GUI tasks. Its "1+N" LoRA architecture and QALFT framework facilitate efficient task adaptation and model compression, enabling a 6.7x peak decoding speedup and a 1.8 bits-per-weight compression ratio on mobile chips. Detailed model sizes and components are provided below: | Model | Total Parameters (B) | Visual Encoder | LLM | |---|---|---|---| | AndesVL-0.6B | 0.695 | SigLIP2-Base | Qwen3-0.6B | | AndesVL-1B | 0.927 | AIMv2-Large | Qwen3-0.6B | | **AndesVL-2B** | 2.055 | AIMv2-Large | Qwen3-1.7B| | AndesVL-4B | 4.360 | AIMv2-Large | Qwen3-4B | # Quick Start ```commandline # require transformers>=4.52.4 import torch from transformers import AutoModel, AutoTokenizer, CLIPImageProcessor model_dir = "OPPOer/AndesVL-2B-Instruct" model = AutoModel.from_pretrained(model_dir, trust_remote_code=True,torch_dtype=torch.bfloat16).cuda() tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) image_processor = CLIPImageProcessor.from_pretrained(model_dir, trust_remote_code=True) messages = [ { "role": "user", "content": [ {"type": "text", "text": "描述这张图片。"}, { "type": "image_url", "image_url": { "url": "https://i-blog.csdnimg.cn/blog_migrate/2f4c88e71f7eabe46d062d2f1ec77d10.jpeg" # image/to/path }, } ], }, ] res = model.chat(messages, tokenizer, image_processor, max_new_tokens=1024, do_sample=True, temperature=0.6) print(res) ``` # Citation If you find our work helpful, feel free to give us a cite. ``` @misc{jin2025andesvltechnicalreportefficient, title={AndesVL Technical Report: An Efficient Mobile-side Multimodal Large Language Model}, author={AndesVL Team, OPPO AI Center}, year={2025}, eprint={2510.11496}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2510.11496}, } ``` # Acknowledge We are very grateful for the efforts of the [Qwen](https://huggingface.co/Qwen), [AimV2](https://huggingface.co/apple/aimv2-large-patch14-224) and [Siglip 2](https://arxiv.org/abs/2502.14786) projects.