Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +28 -0
- chat_template.jinja +86 -0
- config.json +66 -0
- configuration_aimv2_navit_rope.py +59 -0
- configuration_andesvl.py +34 -0
- generation_config.json +12 -0
- merges.txt +0 -0
- modeling_aimv2_navit_rope.py +388 -0
- modeling_andesvl.py +287 -0
- preprocessor_config.json +32 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +239 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</img>": 151653,
|
3 |
+
"</think>": 151668,
|
4 |
+
"</tool_call>": 151658,
|
5 |
+
"</tool_response>": 151666,
|
6 |
+
"<img>": 151652,
|
7 |
+
"<think>": 151667,
|
8 |
+
"<tool_call>": 151657,
|
9 |
+
"<tool_response>": 151665,
|
10 |
+
"<|box_end|>": 151649,
|
11 |
+
"<|box_start|>": 151648,
|
12 |
+
"<|endoftext|>": 151643,
|
13 |
+
"<|file_sep|>": 151664,
|
14 |
+
"<|fim_middle|>": 151660,
|
15 |
+
"<|fim_pad|>": 151662,
|
16 |
+
"<|fim_prefix|>": 151659,
|
17 |
+
"<|fim_suffix|>": 151661,
|
18 |
+
"<|im_end|>": 151645,
|
19 |
+
"<|im_start|>": 151644,
|
20 |
+
"<|image_pad|>": 151655,
|
21 |
+
"<|object_ref_end|>": 151647,
|
22 |
+
"<|object_ref_start|>": 151646,
|
23 |
+
"<|quad_end|>": 151651,
|
24 |
+
"<|quad_start|>": 151650,
|
25 |
+
"<|repo_name|>": 151663,
|
26 |
+
"<|video_pad|>": 151656,
|
27 |
+
"<|vision_pad|>": 151654
|
28 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0].role == 'system' %}
|
4 |
+
{{- messages[0].content + '\n\n' }}
|
5 |
+
{%- endif %}
|
6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
7 |
+
{%- for tool in tools %}
|
8 |
+
{{- "\n" }}
|
9 |
+
{{- tool | tojson }}
|
10 |
+
{%- endfor %}
|
11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
12 |
+
{%- else %}
|
13 |
+
{%- if messages[0].role == 'system' %}
|
14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
15 |
+
{%- endif %}
|
16 |
+
{%- endif %}
|
17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
18 |
+
{%- for message in messages[::-1] %}
|
19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
20 |
+
{%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
21 |
+
{%- set ns.multi_step_tool = false %}
|
22 |
+
{%- set ns.last_query_index = index %}
|
23 |
+
{%- endif %}
|
24 |
+
{%- endfor %}
|
25 |
+
{%- for message in messages %}
|
26 |
+
{%- if message.content is string %}
|
27 |
+
{%- set content = message.content %}
|
28 |
+
{%- else %}
|
29 |
+
{%- set content = '' %}
|
30 |
+
{%- endif %}
|
31 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
32 |
+
{{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
|
33 |
+
{%- elif message.role == "assistant" %}
|
34 |
+
{%- set reasoning_content = '' %}
|
35 |
+
{%- if message.reasoning_content is string %}
|
36 |
+
{%- set reasoning_content = message.reasoning_content %}
|
37 |
+
{%- else %}
|
38 |
+
{%- if '</think>' in content %}
|
39 |
+
{%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
40 |
+
{%- set content = content.split('</think>')[-1].lstrip('\n') %}
|
41 |
+
{%- endif %}
|
42 |
+
{%- endif %}
|
43 |
+
{%- if loop.index0 > ns.last_query_index %}
|
44 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
45 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
46 |
+
{%- else %}
|
47 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
48 |
+
{%- endif %}
|
49 |
+
{%- else %}
|
50 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
51 |
+
{%- endif %}
|
52 |
+
{%- if message.tool_calls %}
|
53 |
+
{%- for tool_call in message.tool_calls %}
|
54 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
55 |
+
{{- '\n' }}
|
56 |
+
{%- endif %}
|
57 |
+
{%- if tool_call.function %}
|
58 |
+
{%- set tool_call = tool_call.function %}
|
59 |
+
{%- endif %}
|
60 |
+
{{- '<tool_call>\n{"name": "' }}
|
61 |
+
{{- tool_call.name }}
|
62 |
+
{{- '", "arguments": ' }}
|
63 |
+
{%- if tool_call.arguments is string %}
|
64 |
+
{{- tool_call.arguments }}
|
65 |
+
{%- else %}
|
66 |
+
{{- tool_call.arguments | tojson }}
|
67 |
+
{%- endif %}
|
68 |
+
{{- '}\n</tool_call>' }}
|
69 |
+
{%- endfor %}
|
70 |
+
{%- endif %}
|
71 |
+
{{- '<|im_end|>\n' }}
|
72 |
+
{%- elif message.role == "tool" %}
|
73 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
74 |
+
{{- '<|im_start|>user' }}
|
75 |
+
{%- endif %}
|
76 |
+
{{- '\n<tool_response>\n' }}
|
77 |
+
{{- content }}
|
78 |
+
{{- '\n</tool_response>' }}
|
79 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
80 |
+
{{- '<|im_end|>\n' }}
|
81 |
+
{%- endif %}
|
82 |
+
{%- endif %}
|
83 |
+
{%- endfor %}
|
84 |
+
{%- if add_generation_prompt %}
|
85 |
+
{{- '<|im_start|>assistant\n' }}
|
86 |
+
{%- endif %}
|
config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"AndesVLForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_andesvl.AndesVLConfig",
|
7 |
+
"AutoModel": "modeling_andesvl.AndesVLForConditionalGeneration",
|
8 |
+
"AutoModelForCausalLM": "modeling_andesvl.AndesVLForConditionalGeneration"
|
9 |
+
},
|
10 |
+
"model_type": "andesvl-aimv2-qwen3",
|
11 |
+
"text_config": {
|
12 |
+
"vocab_size": 151936,
|
13 |
+
"max_position_embeddings": 262144,
|
14 |
+
"hidden_size": 2560,
|
15 |
+
"intermediate_size": 9728,
|
16 |
+
"num_hidden_layers": 36,
|
17 |
+
"num_attention_heads": 32,
|
18 |
+
"use_sliding_window": false,
|
19 |
+
"sliding_window": null,
|
20 |
+
"max_window_layers": 36,
|
21 |
+
"num_key_value_heads": 8,
|
22 |
+
"head_dim": 128,
|
23 |
+
"hidden_act": "silu",
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"rms_norm_eps": 1e-06,
|
26 |
+
"use_cache": true,
|
27 |
+
"rope_theta": 5000000,
|
28 |
+
"rope_scaling": null,
|
29 |
+
"attention_bias": false,
|
30 |
+
"attention_dropout": 0.0,
|
31 |
+
"tie_word_embeddings": true,
|
32 |
+
"architectures": [
|
33 |
+
"Qwen3ForCausalLM"
|
34 |
+
],
|
35 |
+
"bos_token_id": 151643,
|
36 |
+
"eos_token_id": 151645,
|
37 |
+
"model_type": "qwen3"
|
38 |
+
},
|
39 |
+
"vision_config": {
|
40 |
+
"attention_dropout": 0.0,
|
41 |
+
"disable_rope": false,
|
42 |
+
"fullatt_block_indexes": null,
|
43 |
+
"hidden_size": 1024,
|
44 |
+
"hidden_stride": 2,
|
45 |
+
"image_size": 448,
|
46 |
+
"intermediate_size": 2816,
|
47 |
+
"interpolate_pe_method": "two_dim",
|
48 |
+
"model_type": "aimv2",
|
49 |
+
"num_attention_heads": 8,
|
50 |
+
"num_channels": 3,
|
51 |
+
"num_hidden_layers": 24,
|
52 |
+
"patch_size": 14,
|
53 |
+
"preserve_original_pe": true,
|
54 |
+
"projection_dropout": 0.0,
|
55 |
+
"qkv_bias": false,
|
56 |
+
"rms_norm_eps": 1e-05,
|
57 |
+
"temporal_patch_size": 1,
|
58 |
+
"torch_dtype": "bfloat16",
|
59 |
+
"transformers_version": "4.52.4",
|
60 |
+
"use_bias": false,
|
61 |
+
"window_size": 112
|
62 |
+
},
|
63 |
+
"tie_word_embeddings": true,
|
64 |
+
"torch_dtype": "bfloat16",
|
65 |
+
"transformers_version": "4.51.0"
|
66 |
+
}
|
configuration_aimv2_navit_rope.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
|
5 |
+
__all__ = ["Aimv2VisionConfig"]
|
6 |
+
|
7 |
+
|
8 |
+
class Aimv2VisionConfig(PretrainedConfig):
|
9 |
+
model_type: str = "aimv2"
|
10 |
+
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
hidden_size: int = 1024,
|
14 |
+
intermediate_size: int = 2816,
|
15 |
+
num_hidden_layers: int = 24,
|
16 |
+
num_attention_heads: int = 8,
|
17 |
+
num_channels: int = 3,
|
18 |
+
image_size: int = 224,
|
19 |
+
patch_size: int = 14,
|
20 |
+
rms_norm_eps: float = 1e-5,
|
21 |
+
attention_dropout: float = 0.0,
|
22 |
+
projection_dropout: float = 0.0,
|
23 |
+
qkv_bias: bool = False,
|
24 |
+
use_bias: bool = False,
|
25 |
+
hidden_stride: int = 2,
|
26 |
+
window_size: int = 112,
|
27 |
+
fullatt_block_indexes: list = None,
|
28 |
+
temporal_patch_size: int = 1,
|
29 |
+
preserve_original_pe: bool = False,
|
30 |
+
interpolate_pe_method: str = 'one_dim',
|
31 |
+
disable_rope: bool = False,
|
32 |
+
min_pixels: int = 3136,
|
33 |
+
max_pixels: int = 1960000,
|
34 |
+
**kwargs: Any,
|
35 |
+
):
|
36 |
+
super().__init__(**kwargs)
|
37 |
+
self.hidden_size = hidden_size
|
38 |
+
self.intermediate_size = intermediate_size
|
39 |
+
self.num_hidden_layers = num_hidden_layers
|
40 |
+
self.num_attention_heads = num_attention_heads
|
41 |
+
self.num_channels = num_channels
|
42 |
+
self.patch_size = patch_size
|
43 |
+
self.image_size = image_size
|
44 |
+
self.attention_dropout = attention_dropout
|
45 |
+
self.rms_norm_eps = rms_norm_eps
|
46 |
+
|
47 |
+
self.projection_dropout = projection_dropout
|
48 |
+
self.qkv_bias = qkv_bias
|
49 |
+
self.use_bias = use_bias
|
50 |
+
|
51 |
+
self.hidden_stride = hidden_stride
|
52 |
+
self.window_size = window_size
|
53 |
+
self.fullatt_block_indexes = fullatt_block_indexes
|
54 |
+
self.temporal_patch_size = temporal_patch_size
|
55 |
+
self.preserve_original_pe = preserve_original_pe
|
56 |
+
self.interpolate_pe_method = interpolate_pe_method
|
57 |
+
self.disable_rope = disable_rope
|
58 |
+
self.min_pixels = min_pixels
|
59 |
+
self.max_pixels = max_pixels
|
configuration_andesvl.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
|
3 |
+
from transformers import Qwen3Config
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
from transformers.utils import logging
|
6 |
+
from .configuration_aimv2_navit_rope import Aimv2VisionConfig
|
7 |
+
|
8 |
+
logger = logging.get_logger(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
class AndesVLConfig(PretrainedConfig):
|
12 |
+
model_type = 'andesvl-aimv2-qwen3'
|
13 |
+
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
vision_config=None,
|
17 |
+
text_config=None,
|
18 |
+
**kwargs):
|
19 |
+
super().__init__(**kwargs)
|
20 |
+
|
21 |
+
self.vision_config = Aimv2VisionConfig(**vision_config) if vision_config is not None else Aimv2VisionConfig()
|
22 |
+
self.text_config = Qwen3Config(**text_config) if text_config is not None else Qwen3Config()
|
23 |
+
|
24 |
+
def to_dict(self):
|
25 |
+
"""
|
26 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
27 |
+
Returns:
|
28 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
29 |
+
"""
|
30 |
+
output = copy.deepcopy(self.__dict__)
|
31 |
+
output['vision_config'] = self.vision_config.to_dict()
|
32 |
+
output['text_config'] = self.text_config.to_dict()
|
33 |
+
output['model_type'] = self.__class__.model_type
|
34 |
+
return output
|
generation_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_sample": true,
|
3 |
+
"temperature": 0.7,
|
4 |
+
"top_k": 20,
|
5 |
+
"top_p": 0.8,
|
6 |
+
"pad_token_id": 151643,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": [
|
9 |
+
151645,
|
10 |
+
151643
|
11 |
+
]
|
12 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_aimv2_navit_rope.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adapted from https://huggingface.co/apple/aimv2-huge-patch14-448 (modification: add gradient checkpoint support)
|
2 |
+
from typing import Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from transformers.modeling_outputs import BaseModelOutputWithNoAttention
|
8 |
+
from transformers.modeling_utils import PreTrainedModel
|
9 |
+
from flash_attn.layers.rotary import apply_rotary_emb
|
10 |
+
from flash_attn import flash_attn_varlen_func
|
11 |
+
|
12 |
+
from .configuration_aimv2_navit_rope import Aimv2VisionConfig
|
13 |
+
|
14 |
+
|
15 |
+
class RMSNorm(nn.Module):
|
16 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
17 |
+
super().__init__()
|
18 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
19 |
+
self.eps = eps
|
20 |
+
|
21 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
22 |
+
output = self._norm(x.float()).type_as(x)
|
23 |
+
return output * self.weight
|
24 |
+
|
25 |
+
def extra_repr(self) -> str:
|
26 |
+
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
27 |
+
|
28 |
+
def _norm(self, x: torch.Tensor) -> torch.Tensor:
|
29 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
30 |
+
|
31 |
+
|
32 |
+
try:
|
33 |
+
from flash_attn.ops.rms_norm import RMSNorm
|
34 |
+
except Exception as e:
|
35 |
+
pass
|
36 |
+
|
37 |
+
|
38 |
+
class AIMv2SwiGLUFFN(nn.Module):
|
39 |
+
def __init__(self, config: Aimv2VisionConfig):
|
40 |
+
super().__init__()
|
41 |
+
hidden_features = config.intermediate_size
|
42 |
+
in_features = config.hidden_size
|
43 |
+
bias = config.use_bias
|
44 |
+
|
45 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
46 |
+
self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
|
47 |
+
self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
|
48 |
+
|
49 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
50 |
+
x = F.silu(self.fc1(x)) * self.fc3(x)
|
51 |
+
x = self.fc2(x)
|
52 |
+
return x
|
53 |
+
|
54 |
+
|
55 |
+
# copied from qwen2.5-vl
|
56 |
+
class VisionRotaryEmbedding(nn.Module):
|
57 |
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
58 |
+
super().__init__()
|
59 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
60 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
61 |
+
|
62 |
+
def forward(self, seqlen: int) -> torch.Tensor:
|
63 |
+
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
64 |
+
freqs = torch.outer(seq, self.inv_freq)
|
65 |
+
return freqs
|
66 |
+
|
67 |
+
# Note: in qwen2-vl and qwen2.5-vl, 3d convolution is used.
|
68 |
+
class AIMv2PatchEmbed(nn.Module):
|
69 |
+
def __init__(self, config: Aimv2VisionConfig):
|
70 |
+
super().__init__()
|
71 |
+
self.config = config
|
72 |
+
self.proj = nn.Conv2d(
|
73 |
+
config.num_channels,
|
74 |
+
config.hidden_size,
|
75 |
+
kernel_size=(config.patch_size, config.patch_size),
|
76 |
+
stride=(config.patch_size, config.patch_size),
|
77 |
+
)
|
78 |
+
assert self.config.temporal_patch_size == 1 #恒等于1.
|
79 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
80 |
+
|
81 |
+
#NOTE: 这里主要是将conv2d转换为linear的运算,效率更高。
|
82 |
+
def _get_2d_weight(self):
|
83 |
+
# Get 2d conv weight and bias, convert to format that linear function can use directly
|
84 |
+
weight = self.proj.weight.view(self.config.hidden_size, -1) # [hidden_size, c*patch_size*patch_size]
|
85 |
+
bias = self.proj.bias if self.proj.bias is not None else torch.zeros(self.config.hidden_size, device=weight.device)
|
86 |
+
return weight, bias
|
87 |
+
|
88 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
89 |
+
# Expected input shape: (num_patches, c*temporal_patch_size*patch_size*patch_size)
|
90 |
+
# When temporal_patch_size=1: (num_patches, c*patch_size*patch_size)
|
91 |
+
x = torch.nn.functional.linear(x, *self._get_2d_weight())
|
92 |
+
x = self.norm(x)
|
93 |
+
return x
|
94 |
+
|
95 |
+
|
96 |
+
class AIMv2ViTPreprocessor(nn.Module):
|
97 |
+
def __init__(self, config: Aimv2VisionConfig):
|
98 |
+
super().__init__()
|
99 |
+
|
100 |
+
num_patches = (config.image_size // config.patch_size) ** 2
|
101 |
+
|
102 |
+
self.patchifier = AIMv2PatchEmbed(config)
|
103 |
+
|
104 |
+
self.preserve_original_pe = config.preserve_original_pe
|
105 |
+
self.hidden_stride = config.hidden_stride
|
106 |
+
|
107 |
+
if self.preserve_original_pe:
|
108 |
+
self.interpolate_pe_method = config.interpolate_pe_method
|
109 |
+
self.pos_embed = nn.Parameter(torch.zeros((1, num_patches, config.hidden_size)))
|
110 |
+
|
111 |
+
def forward(self, x: torch.Tensor, grid_thws: Optional[torch.Tensor] = None) -> torch.Tensor:
|
112 |
+
tokens = self.patchifier(x)
|
113 |
+
|
114 |
+
if self.preserve_original_pe:
|
115 |
+
assert grid_thws is not None
|
116 |
+
pos_embed_new = torch.zeros_like(tokens)
|
117 |
+
if self.interpolate_pe_method == 'one_dim':
|
118 |
+
pos_embed = self.pos_embed.transpose(1,2).to(tokens.device)
|
119 |
+
elif self.interpolate_pe_method == 'two_dim':
|
120 |
+
ori_h = ori_w = int(self.pos_embed.shape[1] ** 0.5)
|
121 |
+
pos_embed = self.pos_embed.reshape(1, ori_h, ori_w, -1).permute(0,3,1,2)
|
122 |
+
else:
|
123 |
+
raise TypeError("The interpolation method for pe should be one_dim, two_dim.")
|
124 |
+
cnt = 0
|
125 |
+
for t, h, w in grid_thws:
|
126 |
+
num_patches = h * w
|
127 |
+
thw = t * h * w
|
128 |
+
if self.interpolate_pe_method == 'one_dim':
|
129 |
+
pe = F.interpolate(pos_embed, size=num_patches, mode='linear', align_corners=False).transpose(1,2)
|
130 |
+
elif self.interpolate_pe_method == 'two_dim':
|
131 |
+
# 1, 1024, 32, 32
|
132 |
+
pe = F.interpolate(pos_embed, size=(h,w), mode='bicubic', align_corners=False)
|
133 |
+
# 1, 1024, 1024
|
134 |
+
pe = pe.permute(0,2,3,1).reshape(1, h*w, -1)
|
135 |
+
# 1024, 1024
|
136 |
+
pe = pe[0].repeat(t,1)
|
137 |
+
# 1, 16, 2, 16, 2, 1024
|
138 |
+
pe = pe.reshape(t, h//self.hidden_stride, self.hidden_stride, w//self.hidden_stride, self.hidden_stride, -1)
|
139 |
+
# 1024, 1024
|
140 |
+
pe = pe.permute(0,1,3,2,4,5).reshape(thw,-1)
|
141 |
+
pos_embed_new[cnt:cnt+thw] = pe
|
142 |
+
|
143 |
+
cnt += thw
|
144 |
+
|
145 |
+
tokens = tokens + pos_embed_new
|
146 |
+
return tokens
|
147 |
+
|
148 |
+
# copied from qwen2.5-vl
|
149 |
+
def apply_rotary_pos_emb_flashatt(
|
150 |
+
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
151 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
152 |
+
cos = cos.chunk(2, dim=-1)[0].contiguous()
|
153 |
+
sin = sin.chunk(2, dim=-1)[0].contiguous()
|
154 |
+
q_embed = apply_rotary_emb(q.float(), cos.float(), sin.float()).type_as(q)
|
155 |
+
k_embed = apply_rotary_emb(k.float(), cos.float(), sin.float()).type_as(k)
|
156 |
+
return q_embed, k_embed
|
157 |
+
|
158 |
+
class AIMv2FlashAttention2(nn.Module):
|
159 |
+
def __init__(self, config: Aimv2VisionConfig) -> None:
|
160 |
+
super().__init__()
|
161 |
+
dim = config.hidden_size
|
162 |
+
self.num_heads = config.num_attention_heads
|
163 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
|
164 |
+
self.proj = nn.Linear(dim, dim, bias=config.use_bias)
|
165 |
+
|
166 |
+
self.use_rope = not config.disable_rope
|
167 |
+
|
168 |
+
def forward(
|
169 |
+
self,
|
170 |
+
hidden_states: torch.Tensor,
|
171 |
+
cu_seqlens: torch.Tensor,
|
172 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
173 |
+
) -> torch.Tensor:
|
174 |
+
|
175 |
+
seq_length = hidden_states.shape[0]
|
176 |
+
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
177 |
+
if self.use_rope:
|
178 |
+
cos, sin = position_embeddings
|
179 |
+
q, k = apply_rotary_pos_emb_flashatt(q.unsqueeze(0), k.unsqueeze(0), cos, sin)
|
180 |
+
q = q.squeeze(0)
|
181 |
+
k = k.squeeze(0)
|
182 |
+
|
183 |
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
184 |
+
attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
|
185 |
+
seq_length, -1
|
186 |
+
)
|
187 |
+
attn_output = self.proj(attn_output)
|
188 |
+
return attn_output
|
189 |
+
|
190 |
+
class AIMv2Block(nn.Module):
|
191 |
+
def __init__(self, config: Aimv2VisionConfig):
|
192 |
+
super().__init__()
|
193 |
+
self.attn = AIMv2FlashAttention2(config)
|
194 |
+
self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
195 |
+
self.mlp = AIMv2SwiGLUFFN(config)
|
196 |
+
self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
197 |
+
|
198 |
+
def forward(
|
199 |
+
self, x: torch.Tensor, cu_seqlens: torch.Tensor, position_embeddings: torch.Tensor
|
200 |
+
) -> torch.Tensor:
|
201 |
+
x = x + self.attn(self.norm_1(x), cu_seqlens=cu_seqlens, position_embeddings=position_embeddings)
|
202 |
+
x = x + self.mlp(self.norm_2(x))
|
203 |
+
return x
|
204 |
+
|
205 |
+
|
206 |
+
class AIMv2Transformer(nn.Module):
|
207 |
+
def __init__(self, config: Aimv2VisionConfig):
|
208 |
+
super().__init__()
|
209 |
+
self.blocks = nn.ModuleList(
|
210 |
+
[AIMv2Block(config) for _ in range(config.num_hidden_layers)]
|
211 |
+
)
|
212 |
+
self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
213 |
+
self.gradient_checkpointing = False
|
214 |
+
|
215 |
+
self.rotary_pos_emb = VisionRotaryEmbedding(config.hidden_size // config.num_attention_heads // 2)
|
216 |
+
|
217 |
+
self.hidden_stride = config.hidden_stride
|
218 |
+
self.patch_size = config.patch_size
|
219 |
+
self.window_size = config.window_size
|
220 |
+
self.spatial_merge_unit = config.hidden_stride * config.hidden_stride
|
221 |
+
|
222 |
+
self.fullatt_block_indexes = config.fullatt_block_indexes
|
223 |
+
|
224 |
+
# copied from qwen2.5_vl
|
225 |
+
def rot_pos_emb(self, grid_thw):
|
226 |
+
pos_ids = []
|
227 |
+
for t, h, w in grid_thw:
|
228 |
+
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
229 |
+
hpos_ids = hpos_ids.reshape(
|
230 |
+
h // self.hidden_stride,
|
231 |
+
self.hidden_stride,
|
232 |
+
w // self.hidden_stride,
|
233 |
+
self.hidden_stride,
|
234 |
+
)
|
235 |
+
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
236 |
+
hpos_ids = hpos_ids.flatten()
|
237 |
+
|
238 |
+
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
239 |
+
wpos_ids = wpos_ids.reshape(
|
240 |
+
h // self.hidden_stride,
|
241 |
+
self.hidden_stride,
|
242 |
+
w // self.hidden_stride,
|
243 |
+
self.hidden_stride,
|
244 |
+
)
|
245 |
+
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
246 |
+
wpos_ids = wpos_ids.flatten()
|
247 |
+
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
248 |
+
pos_ids = torch.cat(pos_ids, dim=0)
|
249 |
+
max_grid_size = grid_thw[:, 1:].max()
|
250 |
+
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
251 |
+
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
252 |
+
return rotary_pos_emb
|
253 |
+
|
254 |
+
def get_window_index(self, grid_thw):
|
255 |
+
window_index: list = []
|
256 |
+
cu_window_seqlens: list = [0]
|
257 |
+
window_index_id = 0
|
258 |
+
vit_merger_window_size = self.window_size // self.hidden_stride // self.patch_size # patch (after merge) number in each window
|
259 |
+
|
260 |
+
for grid_t, grid_h, grid_w in grid_thw:
|
261 |
+
llm_grid_h, llm_grid_w = (
|
262 |
+
grid_h // self.hidden_stride, # number of patch after merge
|
263 |
+
grid_w // self.hidden_stride,
|
264 |
+
)
|
265 |
+
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
|
266 |
+
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
|
267 |
+
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
|
268 |
+
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
|
269 |
+
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
|
270 |
+
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
|
271 |
+
index_padded = index_padded.reshape(
|
272 |
+
grid_t,
|
273 |
+
num_windows_h,
|
274 |
+
vit_merger_window_size,
|
275 |
+
num_windows_w,
|
276 |
+
vit_merger_window_size,
|
277 |
+
)
|
278 |
+
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
|
279 |
+
grid_t,
|
280 |
+
num_windows_h * num_windows_w,
|
281 |
+
vit_merger_window_size,
|
282 |
+
vit_merger_window_size,
|
283 |
+
)
|
284 |
+
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
|
285 |
+
index_padded = index_padded.reshape(-1)
|
286 |
+
index_new = index_padded[index_padded != -100]
|
287 |
+
window_index.append(index_new + window_index_id)
|
288 |
+
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1]
|
289 |
+
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
|
290 |
+
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
|
291 |
+
window_index = torch.cat(window_index, dim=0)
|
292 |
+
|
293 |
+
return window_index, cu_window_seqlens
|
294 |
+
|
295 |
+
def forward(
|
296 |
+
self,
|
297 |
+
tokens: torch.Tensor,
|
298 |
+
grid_thws: torch.Tensor,
|
299 |
+
output_hidden_states: bool = False,
|
300 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]:
|
301 |
+
# RoPE, modified from qwen2.5_vl
|
302 |
+
rotary_pos_emb = self.rot_pos_emb(grid_thws)
|
303 |
+
window_index, cu_window_seqlens = self.get_window_index(grid_thws)
|
304 |
+
cu_window_seqlens = torch.tensor(
|
305 |
+
cu_window_seqlens,
|
306 |
+
device=tokens.device,
|
307 |
+
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
|
308 |
+
)
|
309 |
+
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
|
310 |
+
|
311 |
+
seq_len, _ = tokens.size()
|
312 |
+
tokens = tokens.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
|
313 |
+
tokens = tokens[window_index, :, :]
|
314 |
+
tokens = tokens.reshape(seq_len, -1)
|
315 |
+
rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
|
316 |
+
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
|
317 |
+
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
|
318 |
+
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
319 |
+
position_embeddings = (emb.cos(), emb.sin())
|
320 |
+
|
321 |
+
cu_seqlens = torch.repeat_interleave(grid_thws[:, 1] * grid_thws[:, 2], grid_thws[:, 0]).cumsum(
|
322 |
+
dim=0,
|
323 |
+
# Select dtype based on the following factors:
|
324 |
+
# - FA2 requires that cu_seqlens_q must have dtype int32
|
325 |
+
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
|
326 |
+
# See https://github.com/huggingface/transformers/pull/34852 for more information
|
327 |
+
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
|
328 |
+
)
|
329 |
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
330 |
+
|
331 |
+
reverse_indices = torch.argsort(window_index)
|
332 |
+
|
333 |
+
hidden_states = () if output_hidden_states else None
|
334 |
+
for index, block in enumerate(self.blocks):
|
335 |
+
if self.fullatt_block_indexes is None or index in self.fullatt_block_indexes:
|
336 |
+
cu_seqlens_tmp = cu_seqlens
|
337 |
+
else:
|
338 |
+
cu_seqlens_tmp = cu_window_seqlens
|
339 |
+
if self.gradient_checkpointing and self.training:
|
340 |
+
tokens = self._gradient_checkpointing_func(block.__call__, tokens, cu_seqlens_tmp, position_embeddings)
|
341 |
+
else:
|
342 |
+
tokens = block(tokens, cu_seqlens_tmp, position_embeddings)
|
343 |
+
if output_hidden_states:
|
344 |
+
tokens_ = tokens.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
|
345 |
+
hidden_states += (tokens_[reverse_indices,:].reshape(seq_len, -1),)
|
346 |
+
tokens = self.post_trunk_norm(tokens)
|
347 |
+
tokens = tokens.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
|
348 |
+
tokens = tokens[reverse_indices,:].reshape(seq_len, -1)
|
349 |
+
|
350 |
+
return tokens, hidden_states
|
351 |
+
|
352 |
+
|
353 |
+
class AIMv2PretrainedModel(PreTrainedModel):
|
354 |
+
config_class = Aimv2VisionConfig
|
355 |
+
base_model_prefix = "aimv2"
|
356 |
+
supports_gradient_checkpointing = True
|
357 |
+
main_input_name = "pixel_values"
|
358 |
+
_no_split_modules = ["AIMv2ViTPreprocessor", "AIMv2Block"]
|
359 |
+
_supports_sdpa = True
|
360 |
+
_supports_flash_attn_2 = True
|
361 |
+
|
362 |
+
|
363 |
+
class Aimv2VisionModel(AIMv2PretrainedModel):
|
364 |
+
def __init__(self, config: Aimv2VisionConfig):
|
365 |
+
super().__init__(config)
|
366 |
+
self.preprocessor = AIMv2ViTPreprocessor(config)
|
367 |
+
self.trunk = AIMv2Transformer(config)
|
368 |
+
|
369 |
+
def forward(
|
370 |
+
self,
|
371 |
+
hidden_states: torch.Tensor,
|
372 |
+
grid_hws: torch.Tensor,
|
373 |
+
):
|
374 |
+
# NOTE: 这个是我们自研的ViT输入接口
|
375 |
+
# Transform flattened pixel values to include temporal dimension
|
376 |
+
pixel_values = torch.cat([hidden_states for _ in range(self.config.temporal_patch_size)], dim=1)
|
377 |
+
|
378 |
+
# Add temporal dimension (t=1) to the grid info
|
379 |
+
grid_t = torch.ones(grid_hws.shape[0], 1, device=grid_hws.device, dtype=grid_hws.dtype)
|
380 |
+
grid_thws = torch.cat([grid_t, grid_hws], dim=1)
|
381 |
+
|
382 |
+
# Process through the model
|
383 |
+
x = self.preprocessor(pixel_values, grid_thws=grid_thws)
|
384 |
+
x, _ = self.trunk(x, grid_thws=grid_thws, output_hidden_states=False)
|
385 |
+
|
386 |
+
return x
|
387 |
+
|
388 |
+
__all__ = ["Aimv2VisionModel"]
|
modeling_andesvl.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
import torch.utils.checkpoint
|
3 |
+
from transformers import Qwen3ForCausalLM
|
4 |
+
from transformers.modeling_utils import PreTrainedModel
|
5 |
+
from transformers.utils import logging
|
6 |
+
from .configuration_andesvl import AndesVLConfig
|
7 |
+
from .modeling_aimv2_navit_rope import Aimv2VisionModel
|
8 |
+
|
9 |
+
logger = logging.get_logger(__name__)
|
10 |
+
|
11 |
+
class AndesVLForConditionalGeneration(PreTrainedModel):
|
12 |
+
config_class = AndesVLConfig
|
13 |
+
main_input_name = 'pixel_values'
|
14 |
+
_supports_flash_attn_2 = True
|
15 |
+
_no_split_modules = ['Aimv2VisionModel','Qwen3DecoderLayer']
|
16 |
+
|
17 |
+
|
18 |
+
def __init__(self, config: AndesVLConfig):
|
19 |
+
super().__init__(config)
|
20 |
+
|
21 |
+
self.config = config
|
22 |
+
self.vision_encoder = Aimv2VisionModel(config.vision_config)
|
23 |
+
self.language_model = Qwen3ForCausalLM(config.text_config)
|
24 |
+
|
25 |
+
vit_hidden_size = self.vision_encoder.config.hidden_size
|
26 |
+
llm_hidden_size = self.language_model.config.hidden_size
|
27 |
+
self.patch_size = self.vision_encoder.config.patch_size
|
28 |
+
self.mlp = nn.Sequential(
|
29 |
+
nn.Linear(vit_hidden_size * 4, vit_hidden_size * 4),
|
30 |
+
nn.GELU(),
|
31 |
+
nn.Linear(vit_hidden_size * 4, llm_hidden_size),
|
32 |
+
)
|
33 |
+
|
34 |
+
def get_input_embeddings(self):
|
35 |
+
return self.language_model.model.embed_tokens
|
36 |
+
|
37 |
+
def set_input_embeddings(self, value):
|
38 |
+
self.language_model.model.embed_tokens = value
|
39 |
+
|
40 |
+
def get_output_embeddings(self):
|
41 |
+
return self.language_model.lm_head
|
42 |
+
|
43 |
+
def set_output_embeddings(self, new_embeddings):
|
44 |
+
self.language_model.lm_head = new_embeddings
|
45 |
+
|
46 |
+
def get_flated_pixel_values(self, pixel_values):
|
47 |
+
flated_pixel_values = []
|
48 |
+
image_grid_hw = []
|
49 |
+
for pv in pixel_values:
|
50 |
+
c, h, w = pv.shape
|
51 |
+
assert c==3 and h%self.patch_size==0 and w%self.patch_size==0, f"{c}, {w}, {h}, {self.patch_size}"
|
52 |
+
image_grid_hw.append((h//self.patch_size, w//self.patch_size))
|
53 |
+
fpv = pv.reshape(c, h//(2*self.patch_size), 2, self.patch_size, w//(2*self.patch_size), 2, self.patch_size)
|
54 |
+
flated_pixel_values.append(fpv.permute(1, 4, 2, 5, 0, 3, 6).reshape(-1, c*self.patch_size*self.patch_size))
|
55 |
+
flated_pixel_values = torch.cat(flated_pixel_values, dim=0) # (Len_img, C, H, W)
|
56 |
+
image_grid_hw = torch.tensor(image_grid_hw, device=flated_pixel_values.device) # (N_img, 2)
|
57 |
+
return flated_pixel_values, image_grid_hw
|
58 |
+
|
59 |
+
|
60 |
+
def get_vit_embeds_and_merge(self, pixel_values, image_grid_hw, input_embeds, image_flags):
|
61 |
+
"""
|
62 |
+
Args:
|
63 |
+
pixel_values: (Len_img, H_vit0), 拉平后的初始patch特征,按照序列维度拼接在一起
|
64 |
+
image_grid_hw: (N_img, 2), 每个图片的宽高
|
65 |
+
input_embeds: (Bt, Lt, Ht), 每个token的embedding
|
66 |
+
image_flags: (Bt, Lt), 每个token是否是图片
|
67 |
+
"""
|
68 |
+
vit_embeds = self.vision_encoder(pixel_values, image_grid_hw) # (Len_img, H_vit)
|
69 |
+
vit_embeds = vit_embeds.view(-1, vit_embeds.shape[-1]*4) # (Len_img//4, H_vit*4)
|
70 |
+
vit_embeds = self.mlp(vit_embeds) # (Len_img//4, H_llm)
|
71 |
+
vit_embeds = vit_embeds[:image_flags.sum()]
|
72 |
+
Bt, Lt, Ht = input_embeds.shape
|
73 |
+
input_embeds = input_embeds.reshape(-1, Ht)
|
74 |
+
image_flags = image_flags.view(-1)
|
75 |
+
input_embeds[image_flags == 1] = vit_embeds
|
76 |
+
input_embeds = input_embeds.view(Bt, Lt, Ht)
|
77 |
+
return input_embeds
|
78 |
+
|
79 |
+
@torch.inference_mode()
|
80 |
+
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
81 |
+
def generate(
|
82 |
+
self,
|
83 |
+
pixel_values=None,
|
84 |
+
input_ids=None,
|
85 |
+
attention_mask=None,
|
86 |
+
image_flags=None, # (Bt, Lt)
|
87 |
+
generation_config=None,
|
88 |
+
**generate_kwargs,
|
89 |
+
) -> torch.LongTensor:
|
90 |
+
|
91 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids) # (Bt, Lt, Ht)
|
92 |
+
if image_flags != None and (image_flags == 1).sum() > 0:
|
93 |
+
flated_pixel_values, image_grid_hw = self.get_flated_pixel_values(pixel_values)
|
94 |
+
input_embeds = self.get_vit_embeds_and_merge(flated_pixel_values, image_grid_hw, input_embeds, image_flags)
|
95 |
+
outputs = self.language_model.generate(
|
96 |
+
input_ids=input_ids,
|
97 |
+
inputs_embeds=input_embeds,
|
98 |
+
attention_mask=attention_mask,
|
99 |
+
generation_config=generation_config,
|
100 |
+
use_cache=True,
|
101 |
+
**generate_kwargs,
|
102 |
+
)
|
103 |
+
return outputs
|
104 |
+
|
105 |
+
#NOTE: completion和chat接口暂不支持batch推理,需要手动构建self.generate函数的输入来实现。
|
106 |
+
def completion(self, prompt, images, tokenizer, image_processor, **kwargs):
|
107 |
+
"""输入一段文字和一组图片(其中文字中的图片用占位符标记为<image>),输出补全的文本"""
|
108 |
+
assert prompt.count("<image>") == len(images), "图片数量和占位符数量不匹配"
|
109 |
+
def replacement(m):
|
110 |
+
token_count = image_tokens.pop(0)
|
111 |
+
return f"<img>{'<|vision_pad|>' * token_count}</img>"
|
112 |
+
#首先对所有的图像进行处理,获取对应的size
|
113 |
+
max_size = kwargs.get("max_size", 733) # max_size**2为支持的最大的面积
|
114 |
+
base = self.patch_size*2
|
115 |
+
image_token_id = tokenizer.vocab['<|vision_pad|>'] # 图像token的占位符
|
116 |
+
background_color = tuple(int(x*255) for x in image_processor.image_mean)
|
117 |
+
transform = T.Compose([T.ToTensor(),T.Normalize(mean=image_processor.image_mean, std=image_processor.image_std)])
|
118 |
+
pixel_values = []
|
119 |
+
image_tokens = []
|
120 |
+
for image in images:
|
121 |
+
if isinstance(image, (tuple, list)):
|
122 |
+
image, detail = image
|
123 |
+
else:
|
124 |
+
detail = "low"
|
125 |
+
image = load_image(image)
|
126 |
+
if detail=="low":
|
127 |
+
image = native_preprocess(image, max_size, base, background_color, min_tokens=4)
|
128 |
+
pixel_values.append(transform(image))
|
129 |
+
image_tokens.append(image.size[0]*image.size[1]//(base*base))
|
130 |
+
else:
|
131 |
+
raise NotImplementedError("暂未实现")
|
132 |
+
new_prompt = re.sub(r"<image>", replacement, prompt)
|
133 |
+
input_ids = tokenizer(new_prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(self.device)
|
134 |
+
image_flags = (input_ids == image_token_id).int()
|
135 |
+
input_ids = input_ids.to(self.vision_encoder.device)
|
136 |
+
pixel_values = [pv.to(self.vision_encoder.device) for pv in pixel_values]
|
137 |
+
image_flags = image_flags.to(self.vision_encoder.device)
|
138 |
+
output_ids = self.generate(pixel_values=pixel_values, input_ids=input_ids, image_flags=image_flags, **kwargs)[0][input_ids.shape[1]:]
|
139 |
+
return tokenizer.decode(output_ids, skip_special_tokens=True)
|
140 |
+
|
141 |
+
def chat(self, messages, tokenizer, image_processor, **kwargs):
|
142 |
+
"""输入是一组对话信息(openai格式),输出是回复"""
|
143 |
+
prompt = ""
|
144 |
+
images = []
|
145 |
+
for message in messages:
|
146 |
+
role = message["role"]
|
147 |
+
assert role in ["user", "assistant", "system"], f"非法的角色{role}"
|
148 |
+
content = message['content']
|
149 |
+
if isinstance(content, str):
|
150 |
+
prompt += f"<|im_start|>{role}\n{content}{tokenizer.eos_token}\n"
|
151 |
+
elif isinstance(content, list):
|
152 |
+
temp = ""
|
153 |
+
for sub_content in content:
|
154 |
+
if sub_content['type']=='text':
|
155 |
+
temp += f"{sub_content['text']}"
|
156 |
+
elif sub_content['type']=='image_url':
|
157 |
+
temp += "<image>"
|
158 |
+
images.append([load_image(sub_content['image_url']['url']), sub_content['image_url'].get("detail",'low')])
|
159 |
+
prompt += f"<|im_start|>{role}\n{temp}{tokenizer.eos_token}\n"
|
160 |
+
else:
|
161 |
+
raise ValueError(f"非法的内容{content}")
|
162 |
+
if 'thinking' in kwargs:
|
163 |
+
kwargs.pop('thinking')
|
164 |
+
prompt += f"<|im_start|>assistant\n"
|
165 |
+
return self.completion(prompt, images, tokenizer, image_processor, **kwargs)
|
166 |
+
|
167 |
+
########################
|
168 |
+
###下面是图像处理的代码###
|
169 |
+
########################
|
170 |
+
|
171 |
+
import os
|
172 |
+
import math
|
173 |
+
import re
|
174 |
+
from typing import Union
|
175 |
+
import requests
|
176 |
+
import base64
|
177 |
+
from io import BytesIO
|
178 |
+
from PIL import Image
|
179 |
+
import torchvision.transforms as T
|
180 |
+
|
181 |
+
def load_image(source: Union[str, Image.Image]) -> Image.Image:
|
182 |
+
"""加载图像"""
|
183 |
+
if isinstance(source, Image.Image):
|
184 |
+
img = source
|
185 |
+
elif isinstance(source, str):
|
186 |
+
if source.startswith('http'):
|
187 |
+
response = requests.get(source)
|
188 |
+
response.raise_for_status()
|
189 |
+
img = Image.open(BytesIO(response.content))
|
190 |
+
elif os.path.exists(source):
|
191 |
+
img = Image.open(source)
|
192 |
+
elif source.startswith('data:image'):
|
193 |
+
img = Image.open(BytesIO(base64.b64decode(source.split(',')[1])))
|
194 |
+
else:
|
195 |
+
raise ValueError("Unsupported image source")
|
196 |
+
else:
|
197 |
+
raise ValueError("Unsupported image source")
|
198 |
+
return img.convert('RGB')
|
199 |
+
|
200 |
+
def get_scaled_img_size(image_size, max_area, base, max_resolution=4172, upper=True):
|
201 |
+
"""计算缩放后的图片大小和包裹矩形的大小"""
|
202 |
+
# 计算原始图片的宽高比
|
203 |
+
aspect_ratio = image_size[0] / image_size[1]
|
204 |
+
# 计算包裹矩形的最大可能宽度和高度
|
205 |
+
max_width = math.floor(math.sqrt(max_area * aspect_ratio))
|
206 |
+
max_height = math.floor(math.sqrt(max_area / aspect_ratio))
|
207 |
+
max_width, max_height = min(max_width, max_resolution), min(
|
208 |
+
max_height, max_resolution
|
209 |
+
)
|
210 |
+
max_width, max_height = max(max_width, base), max(max_height, base)
|
211 |
+
# 确保包裹矩形的宽度和高度都是base的整数倍
|
212 |
+
if not upper:
|
213 |
+
# 向下取整, 保证面积不会超过max_area
|
214 |
+
max_width = max_width - max_width % base
|
215 |
+
max_height = max_height - max_height % base
|
216 |
+
else:
|
217 |
+
# 向上取整,同时不超过max_resolution(单边最大长度)
|
218 |
+
max_width = min(max_width + (base - max_width % base), max_resolution)
|
219 |
+
max_height = min(max_height + (base - max_height % base), max_resolution)
|
220 |
+
# 计算缩放因子
|
221 |
+
scale_factor = min(max_width / image_size[0], max_height / image_size[1])
|
222 |
+
# 计算缩放后的图片大小
|
223 |
+
new_image_size = (
|
224 |
+
round(image_size[0] * scale_factor),
|
225 |
+
round(image_size[1] * scale_factor),
|
226 |
+
)
|
227 |
+
# 计算包裹矩形的大小
|
228 |
+
bounding_box_size = (max_width, max_height)
|
229 |
+
return new_image_size, bounding_box_size
|
230 |
+
|
231 |
+
|
232 |
+
def max_preprocess(
|
233 |
+
img, max_size, base, background_color, max_resolution=4172, upper=True, force_resize=False
|
234 |
+
):
|
235 |
+
"""对图片进行预处理,使其面积接近max_size**2"""
|
236 |
+
# 首先把图片resize到长度和宽度都低于max_resolution
|
237 |
+
w, h = img.size
|
238 |
+
if max(w, h) > max_resolution:
|
239 |
+
scale = max_resolution / max(w, h)
|
240 |
+
w, h = int(w * scale), int(h * scale)
|
241 |
+
# 获取缩放后的图片大小和包裹矩形的大小
|
242 |
+
new_image_size, bounding_box_size = get_scaled_img_size(
|
243 |
+
(w, h), max_size**2, base, max_resolution, upper
|
244 |
+
)
|
245 |
+
if force_resize:
|
246 |
+
return img.resize(bounding_box_size)
|
247 |
+
# 创建一个新的画布
|
248 |
+
canvas = Image.new("RGB", bounding_box_size, background_color)
|
249 |
+
# 计算将图像粘贴到画布上的位置
|
250 |
+
paste_width = (bounding_box_size[0] - new_image_size[0]) // 2
|
251 |
+
paste_height = (bounding_box_size[1] - new_image_size[1]) // 2
|
252 |
+
# 将图像粘贴到画布上
|
253 |
+
canvas.paste(img.resize(new_image_size), (paste_width, paste_height))
|
254 |
+
return canvas
|
255 |
+
|
256 |
+
def native_preprocess(
|
257 |
+
img, max_size, base, background_color, max_resolution=4172, min_tokens=64
|
258 |
+
):
|
259 |
+
# 对图片进行处理,使其宽度和高度都是base的整数倍
|
260 |
+
# 如果图片的最长边超过max_resolution,就把图片resize到max_resolution以内
|
261 |
+
w, h = img.size
|
262 |
+
# 首先保证图片的最长边不超过max_resolution(ViT在极限长度)
|
263 |
+
if max(w, h) > max_resolution:
|
264 |
+
scale = max_resolution / max(w, h)
|
265 |
+
w, h = int(w * scale), int(h * scale)
|
266 |
+
img = img.resize((w, h))
|
267 |
+
if w * h > max_size**2:
|
268 |
+
return max_preprocess(img, max_size, base, background_color, max_resolution)
|
269 |
+
if w * h < (base * base * min_tokens):
|
270 |
+
return max_preprocess(
|
271 |
+
img,
|
272 |
+
int(base * (min_tokens**0.5)),
|
273 |
+
base,
|
274 |
+
background_color,
|
275 |
+
max_resolution,
|
276 |
+
)
|
277 |
+
w1, h1 = w + base - w % base, h + base - h % base
|
278 |
+
if w1 == w and h1 == h:
|
279 |
+
return img
|
280 |
+
else:
|
281 |
+
# 创建一个新的(w1, h1)的画布,并把图片resize保证只有一侧存在白边的情况
|
282 |
+
scale = min(w1 / w, h1 / h)
|
283 |
+
new_w, new_h = int(w * scale), int(h * scale)
|
284 |
+
img = img.resize((new_w, new_h))
|
285 |
+
canvas = Image.new("RGB", (w1, h1), background_color)
|
286 |
+
canvas.paste(img, ((w1 - new_w) // 2, (h1 - new_h) // 2))
|
287 |
+
return canvas
|
preprocessor_config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": -1,
|
4 |
+
"width": -1
|
5 |
+
},
|
6 |
+
"do_center_crop": false,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": false,
|
11 |
+
"hidden_stride": 2,
|
12 |
+
"image_mean": [
|
13 |
+
0.48145466,
|
14 |
+
0.4578275,
|
15 |
+
0.40821073
|
16 |
+
],
|
17 |
+
"image_processor_type": "CLIPImageProcessor",
|
18 |
+
"image_std": [
|
19 |
+
0.26862954,
|
20 |
+
0.26130258,
|
21 |
+
0.27577711
|
22 |
+
],
|
23 |
+
"max_pixels": 2408448,
|
24 |
+
"min_pixels": 200704,
|
25 |
+
"patch_size": 14,
|
26 |
+
"resample": 3,
|
27 |
+
"rescale_factor": 0.00392156862745098,
|
28 |
+
"size": {
|
29 |
+
"shortest_edge": -1
|
30 |
+
},
|
31 |
+
"temporal_patch_size": 1
|
32 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:337d5a8162e654cb38d9c1a85f9e73d4719efb55b6278e705b5927e9a2ab035f
|
3 |
+
size 8719640490
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<img>",
|
12 |
+
"</img>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e0d3ee707b399f44f189e1abfb2b3cd844b96407e9b2a5a21cb3e0b5f57bb05
|
3 |
+
size 11422629
|
tokenizer_config.json
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<img>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "</img>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<img>",
|
224 |
+
"</img>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"clean_up_tokenization_spaces": false,
|
231 |
+
"eos_token": "<|im_end|>",
|
232 |
+
"errors": "replace",
|
233 |
+
"extra_special_tokens": {},
|
234 |
+
"model_max_length": 262144,
|
235 |
+
"pad_token": "<|endoftext|>",
|
236 |
+
"split_special_tokens": false,
|
237 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
238 |
+
"unk_token": null
|
239 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|