File size: 14,893 Bytes
4333c13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
open_ended_question_generator_secure.py
End-to-end script to generate open-ended questions from context(s) with:
- Robust list-formatted parsing
- CLI with single or batch inputs (TXT/CSV)
- Reproducibility (seed)
- Device auto-select (CUDA / MPS / CPU)
- Export to JSON / CSV / TXT
- Optional AES-256-like authenticated encryption via Fernet (with PBKDF2 key derivation)
- Optional decryption utility
Dependencies:
pip install torch transformers cryptography
Example:
python open_ended_question_generator_secure.py \
--context "AGI for cosmology" --n 5 --model gpt2-large \
--out questions.json --format json --encrypt --password "your-secret"
"""
import os
import re
import csv
import json
import argparse
import getpass
import base64
import sys
from typing import List, Dict, Tuple, Optional
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# --- Optional encryption deps ---
try:
from cryptography.fernet import Fernet
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.backends import default_backend
except Exception:
Fernet = None # Will validate at runtime if encryption/decryption is used.
# ----------------------------
# Device selection
# ----------------------------
def select_device() -> torch.device:
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
return torch.device("mps")
if torch.cuda.is_available():
return torch.device("cuda")
return torch.device("cpu")
# ----------------------------
# Prompt and parsing
# ----------------------------
PROMPT_TEMPLATE = """You are a master at generating deep, open-ended, and thought-provoking questions.
Each question must be:
- Self-contained and understandable without extra context.
- Exploratory (not answerable with yes/no).
- Written in clear, engaging language.
Context:
{context}
Output exactly {n} questions as a numbered list, one per line, formatted like:
1. ...
2. ...
3. ...
No extra commentary, no headings, no explanations โ just the list.
"""
def build_prompt(context: str, n: int) -> str:
return PROMPT_TEMPLATE.format(context=context.strip(), n=n)
_Q_LINE_RE = re.compile(r"^\s*(\d+)\.\s+(.*\S)\s*$")
def normalize_q(q: str) -> str:
q = q.strip()
# Ensure it ends with a question mark for consistency
if not q.endswith("?"):
q += "?"
return q
def parse_questions_from_text(text: str, n: int) -> List[str]:
lines = text.splitlines()
candidates = []
for line in lines:
m = _Q_LINE_RE.match(line)
if m:
q_text = normalize_q(m.group(2))
candidates.append(q_text)
# Deduplicate while preserving order
seen = set()
unique = []
for q in candidates:
key = q.lower().strip()
if key not in seen:
seen.add(key)
unique.append(q)
return unique[:n]
# ----------------------------
# Model loading and generation
# ----------------------------
def load_model_and_tokenizer(model_name: str, device: torch.device):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model.to(device)
# For models like GPT-2 without a pad token
if tokenizer.pad_token_id is None and tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
return model, tokenizer
def generate_questions_once(
model,
tokenizer,
device: torch.device,
context: str,
n: int,
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int,
) -> List[str]:
prompt = build_prompt(context, n)
inputs = tokenizer(prompt, return_tensors="pt").to(device)
output = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
decoded = tokenizer.decode(output[0], skip_special_tokens=True)
# Extract only the continuation after the prompt
# In many causal LMs, decoded contains prompt + completion; we slice from len(input_ids)
# Simpler approach: parse all lines and trust the numbered format.
questions = parse_questions_from_text(decoded, n)
return questions
def generate_questions(
model,
tokenizer,
device: torch.device,
context: str,
n: int = 3,
max_new_tokens: int = 200,
temperature: float = 0.95,
top_p: float = 0.95,
top_k: int = 50,
seed: Optional[int] = None,
attempts: int = 3,
) -> List[str]:
if seed is not None:
torch.manual_seed(seed)
if device.type == "cuda":
torch.cuda.manual_seed_all(seed)
collected: List[str] = []
tried = 0
while len(collected) < n and tried < attempts:
tried += 1
# Slightly adjust temperature on retries to improve variety
temp = min(1.2, max(0.7, temperature + 0.1 * (tried - 1)))
qs = generate_questions_once(
model, tokenizer, device, context, n, max_new_tokens, temp, top_p, top_k
)
# Merge unique
existing = set([q.lower().strip() for q in collected])
for q in qs:
key = q.lower().strip()
if key not in existing and len(collected) < n:
collected.append(q)
existing.add(key)
# If still short, pad with simple variants (rare)
while len(collected) < n:
collected.append(collected[-1] + " (expand)") if collected else collected.append("What deeper questions arise from this context?")
return collected[:n]
# ----------------------------
# Batch input handling
# ----------------------------
def load_contexts(source_text: Optional[str], source_file: Optional[str]) -> List[Tuple[str, str]]:
"""
Returns list of (context_id, context_text).
- If source_text is provided, returns single-item list.
- If CSV file: expects a 'context' column.
- If TXT/MD: splits on lines containing only '---' or returns whole file as one context.
"""
out: List[Tuple[str, str]] = []
if source_text:
out.append(("context_1", source_text.strip()))
return out
if not source_file:
raise ValueError("Either --context or --context-file is required.")
if not os.path.exists(source_file):
raise FileNotFoundError(f"Context file not found: {source_file}")
ext = os.path.splitext(source_file)[1].lower()
if ext == ".csv":
with open(source_file, "r", encoding="utf-8", newline="") as f:
reader = csv.DictReader(f)
if "context" not in reader.fieldnames:
raise ValueError("CSV must have a 'context' column.")
for i, row in enumerate(reader, start=1):
ctx = (row.get("context") or "").strip()
if ctx:
out.append((f"context_{i}", ctx))
else:
# Plain text / markdown: split on '---' delimiter lines if present
with open(source_file, "r", encoding="utf-8") as f:
content = f.read()
parts = re.split(r"^\s*---\s*$", content, flags=re.MULTILINE)
parts = [p.strip() for p in parts if p.strip()]
if not parts:
raise ValueError("No context found in file.")
for i, ctx in enumerate(parts, start=1):
out.append((f"context_{i}", ctx))
return out
# ----------------------------
# Output writers
# ----------------------------
def write_json(out_path: str, rows: List[Dict]):
with open(out_path, "w", encoding="utf-8") as f:
json.dump(rows, f, ensure_ascii=False, indent=2)
def write_csv(out_path: str, rows: List[Dict], n: int):
fieldnames = ["context_id", "context"] + [f"q{i}" for i in range(1, n + 1)]
with open(out_path, "w", encoding="utf-8", newline="") as f:
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
for r in rows:
writer.writerow(r)
def write_txt(out_path: str, rows: List[Dict], n: int):
with open(out_path, "w", encoding="utf-8") as f:
for r in rows:
f.write(f"[{r['context_id']}]\n")
f.write(r["context"].strip() + "\n")
for i in range(1, n + 1):
f.write(f"{i}. {r[f'q{i}']}\n")
f.write("\n")
# ----------------------------
# Encryption / Decryption
# ----------------------------
MAGIC = b"QSEC1"
def require_crypto():
if Fernet is None:
raise RuntimeError("Encryption requested but 'cryptography' is not installed. Run: pip install cryptography")
def derive_key_from_password(password: str, salt: bytes) -> bytes:
kdf = PBKDF2HMAC(
algorithm=hashes.SHA256(),
length=32,
salt=salt,
iterations=200_000,
backend=default_backend(),
)
key = kdf.derive(password.encode("utf-8"))
return base64.urlsafe_b64encode(key)
def encrypt_file(in_path: str, out_path: str, password: str):
require_crypto()
with open(in_path, "rb") as f:
plaintext = f.read()
salt = os.urandom(16)
key = derive_key_from_password(password, salt)
fernet = Fernet(key)
ciphertext = fernet.encrypt(plaintext)
with open(out_path, "wb") as f:
f.write(MAGIC + salt + ciphertext)
def decrypt_file(in_path: str, out_path: str, password: str):
require_crypto()
with open(in_path, "rb") as f:
blob = f.read()
if not blob.startswith(MAGIC) or len(blob) < len(MAGIC) + 16 + 1:
raise ValueError("Invalid or unsupported encrypted file.")
salt = blob[len(MAGIC):len(MAGIC)+16]
ciphertext = blob[len(MAGIC)+16:]
key = derive_key_from_password(password, salt)
fernet = Fernet(key)
plaintext = fernet.decrypt(ciphertext)
with open(out_path, "wb") as f:
f.write(plaintext)
# ----------------------------
# Main CLI
# ----------------------------
def main():
parser = argparse.ArgumentParser(description="Generate deep open-ended questions with optional encryption/decryption.")
mode = parser.add_mutuallyExclusiveGroup(required=True)
mode.add_argument("--generate", action="store_true", help="Generate questions from context(s).")
mode.add_argument("--decrypt", action="store_true", help="Decrypt an encrypted file (no generation).")
# Generation inputs
parser.add_argument("--context", type=str, help="Inline context text.")
parser.add_argument("--context-file", type=str, help="Path to TXT/MD (split by ---) or CSV with 'context' column.")
parser.add_argument("--n", type=int, default=3, help="Number of questions to generate per context.")
parser.add_argument("--model", type=str, default="gpt2-large", help="HuggingFace model name.")
parser.add_argument("--max-new-tokens", type=int, default=220, help="Max new tokens for generation.")
parser.add_argument("--temperature", type=float, default=0.95, help="Sampling temperature.")
parser.add_argument("--top-p", type=float, default=0.95, help="Top-p nucleus sampling.")
parser.add_argument("--top-k", type=int, default=50, help="Top-k sampling.")
parser.add_argument("--seed", type=int, default=None, help="Random seed for reproducibility.")
parser.add_argument("--attempts", type=int, default=3, help="Max attempts to reach exactly n questions.")
# Output
parser.add_argument("--out", type=str, default=None, help="Output file path. If omitted, prints to stdout.")
parser.add_argument("--format", type=str, choices=["json", "csv", "txt"], default="json", help="Output format when generating.")
parser.add_argument("--encrypt", action="store_true", help="Encrypt the output file after generation.")
parser.add_argument("--password", type=str, default=None, help="Password for encryption/decryption. If omitted, prompts securely.")
# Decryption I/O
parser.add_argument("--in", dest="in_path", type=str, help="Input file for decryption (encrypted).")
parser.add_argument("--out-decrypted", type=str, help="Output file for decrypted plaintext.")
args = parser.parse_args()
device = select_device()
if args.decrypt:
# Decrypt mode
if not args.in_path or not args.out_decrypted:
parser.error("--decrypt requires --in and --out-decrypted.")
password = args.password or getpass.getpass("Enter password: ")
decrypt_file(args.in_path, args.out_decrypted, password)
print(f"Decrypted to: {args.out_decrypted}")
return
# Generate mode
contexts = load_contexts(args.context, args.context_file)
model, tokenizer = load_model_and_tokenizer(args.model, device)
rows: List[Dict] = []
for ctx_id, ctx in contexts:
qs = generate_questions(
model=model,
tokenizer=tokenizer,
device=device,
context=ctx,
n=args.n,
max_new_tokens=args.max_new_tokens,
temperature=args.temperature,
top_p=args.top_p,
top_k=args.top_k,
seed=args.seed,
attempts=args.attempts,
)
row = {"context_id": ctx_id, "context": ctx}
for i, q in enumerate(qs, start=1):
row[f"q{i}"] = q
rows.append(row)
# Output
if args.out:
out_path = args.out
os.makedirs(os.path.dirname(out_path) or ".", exist_ok=True)
if args.format == "json":
write_json(out_path, rows)
elif args.format == "csv":
write_csv(out_path, rows, args.n)
else:
write_txt(out_path, rows, args.n)
if args.encrypt:
password = args.password or getpass.getpass("Enter password: ")
enc_path = out_path + ".enc"
encrypt_file(out_path, enc_path, password)
print(f"Saved: {out_path}")
print(f"Encrypted copy: {enc_path}")
else:
print(f"Saved: {out_path}")
else:
# Print to stdout in selected format
if args.format == "json":
print(json.dumps(rows, ensure_ascii=False, indent=2))
elif args.format == "csv":
# Minimal CSV to stdout
fieldnames = ["context_id", "context"] + [f"q{i}" for i in range(1, args.n + 1)]
writer = csv.DictWriter(sys.stdout, fieldnames=fieldnames)
writer.writeheader()
for r in rows:
writer.writerow(r)
else:
for r in rows:
print(f"[{r['context_id']}]")
print(r["context"].strip())
for i in range(1, args.n + 1):
print(f"{i}. {r[f'q{i}']}")
print()
if __name__ == "__main__":
main() |