# -------------------------------------------------------- # InternVL # Copyright (c) 2024 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import copy from typing import Dict, Any, Optional from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging from .configuration_intern_vit import InternVisionConfig logger = logging.get_logger(__name__) class InternVLChatConfig(PretrainedConfig): model_type = 'internvl_chat' is_composition = True def __init__( self, vision_config: Optional[Dict[str, Any]] = None, llm_config: Optional[Dict[str, Any]] = None, use_backbone_lora=0, use_llm_lora=0, select_layer=-1, force_image_size=None, downsample_ratio=0.5, template=None, dynamic_image_size=False, use_thumbnail=False, ps_version="v1", min_dynamic_patch=1, max_dynamic_patch=6, **kwargs, ): super().__init__(**kwargs) if vision_config is None: vision_config = {'architectures': ['InternVisionModel']} logger.info('vision_config is None. Initializing the InternVisionConfig with default values.') if llm_config is None: llm_config = {'architectures': ['Qwen2ForCausalLM']} logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).') assert 'architectures' in llm_config, "Should specify architecture in llm_config" if isinstance(vision_config, dict): self.vision_config = InternVisionConfig(**vision_config) else: self.vision_config = vision_config if isinstance(llm_config, dict): architecture: str = llm_config['architectures'][0] if architecture == 'LlamaForCausalLM': from transformers import LlamaConfig self.llm_config = LlamaConfig(**llm_config) elif architecture == 'Qwen2ForCausalLM': from transformers import Qwen2Config self.llm_config = Qwen2Config(**llm_config) elif architecture == 'Qwen3MoeForCausalLM': from transformers import Qwen3MoeConfig self.llm_config = Qwen3MoeConfig(**llm_config) elif architecture == 'Qwen3ForCausalLM': from transformers import Qwen3Config self.llm_config = Qwen3Config(**llm_config) else: raise ValueError('Unsupported architecture: {}'.format(architecture)) else: self.llm_config = llm_config self.use_backbone_lora = use_backbone_lora self.use_llm_lora = use_llm_lora self.select_layer = select_layer self.force_image_size = force_image_size self.downsample_ratio = downsample_ratio self.template = template self.dynamic_image_size = dynamic_image_size self.use_thumbnail = use_thumbnail self.ps_version = ps_version # pixel shuffle version self.min_dynamic_patch = min_dynamic_patch self.max_dynamic_patch = max_dynamic_patch self.tie_word_embeddings = self.llm_config.tie_word_embeddings logger.info(f'vision_select_layer: {self.select_layer}') logger.info(f'ps_version: {self.ps_version}') logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}') logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}') def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output['vision_config'] = self.vision_config.to_dict() output['llm_config'] = self.llm_config.to_dict() output['model_type'] = self.__class__.model_type output['use_backbone_lora'] = self.use_backbone_lora output['use_llm_lora'] = self.use_llm_lora output['select_layer'] = self.select_layer output['force_image_size'] = self.force_image_size output['downsample_ratio'] = self.downsample_ratio output['template'] = self.template output['dynamic_image_size'] = self.dynamic_image_size output['use_thumbnail'] = self.use_thumbnail output['ps_version'] = self.ps_version output['min_dynamic_patch'] = self.min_dynamic_patch output['max_dynamic_patch'] = self.max_dynamic_patch return output