# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import warnings
from typing import List, Optional, Tuple, Union
import random
import torch.utils.checkpoint
import transformers
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import GenerationConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers import LlamaForCausalLM, Qwen2ForCausalLM, Qwen3ForCausalLM, Qwen3MoeForCausalLM
from .configuration_internvl_chat import InternVLChatConfig
from .conversation import get_conv_template
from .modeling_intern_vit import InternVisionModel, has_flash_attn
logger = logging.get_logger(__name__)
def version_cmp(v1, v2, op='eq'):
import operator
from packaging import version
op_func = getattr(operator, op)
return op_func(version.parse(v1), version.parse(v2))
import torch.utils.checkpoint as cp
class Gating(nn.Module):
def __init__(self, hidden_size=2048, expansion_factor=4, dropout=0.1, use_checkpoint=True):
super().__init__()
self.use_checkpoint = use_checkpoint
mid_dim = hidden_size * expansion_factor
def mlp_block(in_dim, out_dim):
return nn.Sequential(
nn.Linear(in_dim, out_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(out_dim, in_dim),
nn.Dropout(dropout),
nn.LayerNorm(in_dim),
)
self.block1 = mlp_block(hidden_size, mid_dim)
self.block2 = mlp_block(hidden_size, mid_dim)
self.block3 = mlp_block(hidden_size, mid_dim)
self.block4 = mlp_block(hidden_size, mid_dim)
self.gate = nn.Sequential(
nn.LayerNorm(hidden_size),
nn.Linear(hidden_size, 2) # 2 experts
)
def forward(self, x):
if self.use_checkpoint:
x = x + cp.checkpoint(self.block1, x)
x = x + cp.checkpoint(self.block2, x)
x = x + cp.checkpoint(self.block3, x)
x = x + cp.checkpoint(self.block4, x)
else:
x = x + self.block1(x)
x = x + self.block2(x)
x = x + self.block3(x)
x = x + self.block4(x)
logits = self.gate(x) # shape: [B, 2]
probs = torch.softmax(logits, dim=-1) # 每个 token 的 expert 选择概率
return probs
class CrossAttentionPooling(nn.Module):
def __init__(self, dim, num_heads=16):
super().__init__()
self.query_token = nn.Parameter(torch.randn(1, dim)) # [1, D]
self.attn1 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True)
self.norm1 = nn.LayerNorm(dim)
self.attn2 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True)
self.norm2 = nn.LayerNorm(dim)
self.attn3 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True)
self.norm3 = nn.LayerNorm(dim)
self.attn4 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True)
self.norm4 = nn.LayerNorm(dim)
def forward(self, batched_tokens: list[torch.Tensor]):
"""
batched_tokens: List of Tensors of shape [Ti, D], length = B
"""
B = len(batched_tokens)
D = batched_tokens[0].shape[-1]
device = batched_tokens[0].device
# 1. Padding
max_len = max(t.shape[0] for t in batched_tokens)
dtype = self.query_token.dtype
padded = torch.zeros(B, max_len, D, dtype=dtype, device=device)
padding_mask = torch.ones(B, max_len, dtype=torch.bool, device=device)
for i, t in enumerate(batched_tokens):
L = t.shape[0]
padded[i, :L] = t
padding_mask[i, :L] = False
# 2. Query token: [B, 1, D]
query = self.query_token.unsqueeze(0).expand(B, -1, -1) # learnable token for each sample
# 3. First attention
out1, _ = self.attn1(query, padded, padded, key_padding_mask=padding_mask) # [B, 1, D]
out1 = self.norm1(out1)
# 4. Second attention
out2, _ = self.attn2(out1, padded, padded, key_padding_mask=padding_mask) # [B, 1, D]
out2 = self.norm2(out2)
out3, _ = self.attn2(out2, padded, padded, key_padding_mask=padding_mask) # [B, 1, D]
out3 = self.norm2(out3)
out4, _ = self.attn2(out3, padded, padded, key_padding_mask=padding_mask) # [B, 1, D]
out4 = self.norm2(out4)
return out4.squeeze(1)
class InternVLChatModel(PreTrainedModel):
config_class = InternVLChatConfig
main_input_name = 'pixel_values'
base_model_prefix = 'language_model'
_supports_flash_attn_2 = True
supports_gradient_checkpointing = True
_no_split_modules = [
"InternVisionModel",
"Qwen3MoeDecoderLayer",
]
# support transformers 4.51.+
_tp_plan = ''
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
super().__init__(config)
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
image_size = config.force_image_size or config.vision_config.image_size
patch_size = config.vision_config.patch_size
self.patch_size = patch_size
self.select_layer = config.select_layer
self.template = config.template
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
self.downsample_ratio = config.downsample_ratio
self.ps_version = config.ps_version
use_flash_attn = use_flash_attn if has_flash_attn else False
config.vision_config.use_flash_attn = True if use_flash_attn else False
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
logger.info(f'num_image_token: {self.num_image_token}')
logger.info(f'ps_version: {self.ps_version}')
if vision_model is not None:
self.vision_model = vision_model
else:
self.vision_model = InternVisionModel(config.vision_config)
if language_model is not None:
self.language_model = language_model
else:
architecture: str = config.llm_config.architectures[0]
if architecture == 'LlamaForCausalLM':
self.language_model = LlamaForCausalLM(config.llm_config)
elif architecture == 'Qwen2ForCausalLM':
self.language_model = Qwen2ForCausalLM(config.llm_config)
elif architecture == 'Qwen3MoeForCausalLM':
self.language_model = Qwen3MoeForCausalLM(config.llm_config)
elif architecture == 'Qwen3ForCausalLM':
self.language_model = Qwen3ForCausalLM(config.llm_config)
else:
raise NotImplementedError(f'{architecture} is not implemented.')
vit_hidden_size = config.vision_config.hidden_size
llm_hidden_size = config.llm_config.hidden_size
self.mlp1 = nn.Sequential(
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
nn.GELU(),
nn.Linear(llm_hidden_size, llm_hidden_size)
)
self.mlp2 = nn.Sequential(
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 4),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 4, llm_hidden_size * 2),
nn.GELU(),
nn.Dropout(0.1),
nn.Linear(llm_hidden_size * 2, llm_hidden_size * 2),
nn.GELU(),
nn.Dropout(0.1),
nn.Linear(llm_hidden_size * 2, llm_hidden_size)
)
self.pooling_before_gating = CrossAttentionPooling(dim=vit_hidden_size)
self.gating = Gating(hidden_size=vit_hidden_size)
self.flash_mode = getattr(config, "flash_mode", False)
if self.flash_mode:
self.flash_relative_threshold = config.flash_relative_threshold
self.flash_absolute_threshold = config.flash_absolute_threshold
self.img_context_token_id = None
self.conv_template = get_conv_template(self.template)
self.system_message = self.conv_template.system_message
def compress_visual_tokens_in_sentence(
self,
input_embeds: torch.Tensor,
input_ids: torch.Tensor,
mask_idx: torch.Tensor,
img_context_token_id: int,
gate_result,
) -> tuple:
N, C = input_embeds.shape
input_ids = input_ids.squeeze(0) # (N,)
selected = (input_ids == img_context_token_id)
padded = torch.cat([torch.tensor([0], device=selected.device), selected.int(), torch.tensor([0], device=selected.device)])
diff = torch.diff(padded)
starts = (diff == 1).nonzero(as_tuple=True)[0]
ends = (diff == -1).nonzero(as_tuple=True)[0]
lengths = ends - starts
keep_mask = torch.ones(N, dtype=torch.bool, device=input_embeds.device)
delete_flags = torch.zeros(N, dtype=torch.int32, device=input_embeds.device)
p = random.uniform(0, 1)
total_blocks = 0
block_counts = []
for l in lengths.tolist():
if l % 256 != 0:
raise ValueError(f"l % 256 != 0, l = {l}")
num_blocks = l // 256
block_counts.append(num_blocks)
total_blocks += num_blocks
flag_idx = 0
for s, e, l, num_blocks in zip(starts.tolist(), ends.tolist(), lengths.tolist(), block_counts):
for i in range(num_blocks):
block_start = s + i * 256
block_end = block_start + 256
compress = gate_result[flag_idx]
flag_idx += 1
if compress:
keep_mask[block_start + 64 : block_end] = False
delete_flags[block_start + 64 : block_end] = 1
cumulative_deletes = torch.cumsum(delete_flags, dim=0)
cumulative_deletes = torch.cat([cumulative_deletes, cumulative_deletes[-1:].clone()], dim=0)
mask_idx = mask_idx.squeeze(0)
updated_mask_idx = mask_idx - cumulative_deletes[mask_idx.to(cumulative_deletes.device)].to(mask_idx.device)
updated_mask_idx = updated_mask_idx.unsqueeze(0)
new_input_embeds = input_embeds[keep_mask.to(input_embeds.device), :]
new_input_ids = input_ids[keep_mask.to(input_ids.device)]
return new_input_embeds, new_input_ids, updated_mask_idx, keep_mask
def get_image_num_per_sample(
self,
input_ids: torch.Tensor,
):
input_ids = input_ids.squeeze(0) # (N,)
selected = (input_ids == self.img_context_token_id)
padded = torch.cat([torch.tensor([0], device=selected.device), selected.int(), torch.tensor([0], device=selected.device)])
diff = torch.diff(padded)
starts = (diff == 1).nonzero(as_tuple=True)[0]
ends = (diff == -1).nonzero(as_tuple=True)[0]
lengths = ends - starts
return lengths
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
image_flags = image_flags.squeeze(-1)
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
vit_embeds = self.extract_feature(pixel_values)
vit_embeds = vit_embeds[image_flags == 1]
vit_batch_size = pixel_values.shape[0]
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
# if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
# print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
try:
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
f'vit_embeds.shape={vit_embeds.shape}')
n_token = min(selected.sum(), vit_embeds.size(0))
input_embeds[selected][:n_token] = input_embeds[selected][:n_token] * 0.0 + vit_embeds[:n_token]
input_embeds = input_embeds.reshape(B, N, C)
outputs = self.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def pixel_shuffle(self, x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
if self.ps_version == 'v1':
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
'which results in a transposed image.')
else:
x = x.permute(0, 2, 1, 3).contiguous()
return x
def split_and_merge(self, features: torch.Tensor, split_sizes: torch.Tensor):
"""
features: Tensor of shape [T, 1024, 1024]
split_sizes: 1D Tensor like [3, 3, 4] — 每个样本 tile 数
returns: List of Tensors of shape [tile_i * 1024, 1024]
"""
# 拆分 features → 每个样本一个 tile list
tile_splits = torch.split(features, split_sizes, dim=0)
# 合并前两维:tile * 1024 × 1024
merged = [x.reshape(-1, x.shape[-1]) for x in tile_splits]
return merged
def extract_feature_flash(self, pixel_values, lengths):
with torch.no_grad():
vit_embeds_1024 = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=False,
return_dict=True).last_hidden_state
vit_embeds_1024 = vit_embeds_1024[:, 1:, :]
h = w = int(vit_embeds_1024.shape[1] ** 0.5)
vit_embeds_1024 = vit_embeds_1024.reshape(vit_embeds_1024.shape[0], h, w, -1)
# begin moe
lengths = [int(x) for x in lengths.tolist()]
vit_embeds_1024_split_and_merge = self.split_and_merge(vit_embeds_1024, lengths)
gate = self.pooling_before_gating(vit_embeds_1024_split_and_merge)
gate = self.gating(gate)
vit_embeds_256 = vit_embeds_1024.clone()
with torch.no_grad():
vit_embeds_64 = self.pixel_shuffle(vit_embeds_1024, scale_factor=self.downsample_ratio ** 2)
vit_embeds_64 = vit_embeds_64.reshape(vit_embeds_64.shape[0], -1, vit_embeds_64.shape[-1])
vit_embeds_64 = self.mlp2(vit_embeds_64)
vit_embeds_256 = self.pixel_shuffle(vit_embeds_256, scale_factor=self.downsample_ratio)
vit_embeds_256= vit_embeds_256.reshape(vit_embeds_256.shape[0], -1, vit_embeds_256.shape[-1])
vit_embeds_256 = self.mlp1(vit_embeds_256)
return vit_embeds_64, vit_embeds_256, gate
def extract_feature(self, pixel_values):
if self.select_layer == -1:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=False,
return_dict=True).last_hidden_state
else:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=True,
return_dict=True).hidden_states[self.select_layer]
vit_embeds = vit_embeds[:, 1:, :]
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
vit_embeds = self.mlp1(vit_embeds)
return vit_embeds
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
history=None, return_history=False, IMG_START_TOKEN='
', IMG_END_TOKEN='',
IMG_CONTEXT_TOKEN='', verbose=False, image_counts=None):
if history is not None or return_history:
print('Now multi-turn chat is not supported in batch_chat.')
raise NotImplementedError
if image_counts is not None:
num_patches_list = image_counts
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
queries = []
for idx, num_patches in enumerate(num_patches_list):
question = questions[idx]
if pixel_values is not None and '' not in question:
question = '\n' + question
template = get_conv_template(self.template)
template.system_message = self.system_message
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
query = query.replace('', image_tokens, 1)
queries.append(query)
tokenizer.padding_side = 'left'
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
input_ids = model_inputs['input_ids'].to(self.device)
attention_mask = model_inputs['attention_mask'].to(self.device)
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
**generation_config
)
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
responses = [response.split(template.sep.strip())[0].strip() for response in responses]
return responses
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
num_patches_list=None, IMG_START_TOKEN='
', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='',
verbose=False):
if history is None and pixel_values is not None and '' not in question:
question = '\n' + question
if num_patches_list is None:
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
template = get_conv_template(self.template)
template.system_message = self.system_message
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
history = [] if history is None else history
for (old_question, old_answer) in history:
template.append_message(template.roles[0], old_question)
template.append_message(template.roles[1], old_answer)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
for num_patches in num_patches_list:
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
query = query.replace('', image_tokens, 1)
model_inputs = tokenizer(query, return_tensors='pt')
input_ids = model_inputs['input_ids'].to(self.device)
attention_mask = model_inputs['attention_mask'].to(self.device)
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
**generation_config
)
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
response = response.split(template.sep.strip())[0].strip()
history.append((question, response))
if return_history:
return response, history
else:
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '')
if verbose:
print(query_to_print, response)
return response
@torch.no_grad()
def generate_flash(
self,
pixel_values: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
visual_features: Optional[torch.FloatTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
**generate_kwargs,
) -> torch.LongTensor:
assert self.img_context_token_id is not None
if pixel_values is not None:
if visual_features is not None:
vit_embeds = visual_features
else:
lengths = self.get_image_num_per_sample(input_ids) / 256
lengths_sum = torch.ones(int(lengths.sum().item()), dtype=torch.int64)
lengths = lengths_sum.repeat_interleave(1)
vit_embeds_64, vit_embeds_256, gate_result = self.extract_feature_flash(pixel_values, lengths)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
relative_threshold_value = torch.quantile(gate_result[:, 0].to(torch.float32), self.flash_relative_threshold)
gate_result = (gate_result[:, 0] > relative_threshold_value) & (gate_result[:, 0] >= self.flash_absolute_threshold)
selected_embeds = []
for i in range(gate_result.size(0)):
if gate_result [i]:
selected_embeds.append(vit_embeds_64[i])
else:
selected_embeds.append(vit_embeds_256[i])
vit_embeds = torch.cat(selected_embeds, dim=0)
assert torch.all(attention_mask == 1)
input_embeds, input_ids, attention_mask, keep_mask = self.compress_visual_tokens_in_sentence(
input_embeds=input_embeds,
input_ids=input_ids,
mask_idx=attention_mask,
img_context_token_id=self.img_context_token_id,
gate_result=gate_result,
)
attention_mask = torch.ones(1, input_embeds.shape[0]).to(input_embeds.device)
selected = (input_ids == self.img_context_token_id)
assert selected.sum() != 0
input_embeds[selected] = vit_embeds.to(input_embeds.device)
input_embeds = input_embeds.reshape(B, -1, C)
else:
input_embeds = self.language_model.get_input_embeddings()(input_ids)
outputs = self.language_model.generate(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
use_cache=True,
**generate_kwargs,
)
return outputs
@torch.no_grad()
def generate_normal(
self,
pixel_values: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
visual_features: Optional[torch.FloatTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
**generate_kwargs,
) -> torch.LongTensor:
assert self.img_context_token_id is not None
if pixel_values is not None:
if visual_features is not None:
vit_embeds = visual_features
else:
vit_embeds = self.extract_feature(pixel_values)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
assert selected.sum() != 0
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
input_embeds = input_embeds.reshape(B, N, C)
else:
input_embeds = self.language_model.get_input_embeddings()(input_ids)
outputs = self.language_model.generate(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
use_cache=True,
**generate_kwargs,
)
return outputs
def generate(
self,
pixel_values: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
visual_features: Optional[torch.FloatTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
**generate_kwargs,
) -> torch.LongTensor:
if getattr(self, "flash_mode", False):
return self.generate_flash(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
visual_features=visual_features,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
**generate_kwargs,
)
else:
return self.generate_normal(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
visual_features=visual_features,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
**generate_kwargs,
)
@property
def lm_head(self):
return self.language_model.get_output_embeddings()
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
return self.language_model.set_input_embeddings(value)
def set_output_embeddings(self, value):
return self.language_model.set_output_embeddings(value)