File size: 53,719 Bytes
cdd151d
 
 
 
 
 
 
 
 
a5893a3
cdd151d
 
 
 
 
 
 
 
 
6bf5ae9
cdd151d
 
 
 
 
 
 
 
 
6bf5ae9
cdd151d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5893a3
 
 
cdd151d
 
 
 
 
 
 
 
 
 
a3fd315
cdd151d
 
a5893a3
 
 
 
 
 
 
 
 
 
 
 
 
a3fd315
a5893a3
 
cdd151d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf5ae9
cdd151d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf5ae9
cdd151d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf5ae9
cdd151d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5893a3
 
963d33f
a5893a3
 
cdd151d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
---
license: apache-2.0
pipeline_tag: image-text-to-text
library_name: transformers
base_model:
  - OpenGVLab/InternVL3_5-4B-Pretrained
base_model_relation: finetune
datasets:
  - OpenGVLab/MMPR-v1.2
  - OpenGVLab/MMPR-Tiny
language:
  - multilingual
tags:
  - internvl
  - custom_code
---

# InternVL3_5-4B-Instruct

[\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL)  [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238)  [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821)  [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271)  [\[📜 InternVL2.5-MPO\]](https://huggingface.co/papers/2411.10442)  [\[📜 InternVL3\]](https://huggingface.co/papers/2504.10479) [\[📜 InternVL3.5\]](https://huggingface.co/papers/2508.18265)

[\[🆕 Blog\]](https://internvl.github.io/blog/)  [\[🗨️ Chat Demo\]](https://chat.intern-ai.org.cn/)  [\[🚀 Quick Start\]](#quick-start)  [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)

<div align="center">
  <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
</div>

## Introduction

We introduce *InternVL3.5*, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the *Cascade Reinforcement Learning (Cascade RL)* framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a *Visual Resolution Router (ViR)* that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled *Vision-Language Deployment (DvD)* strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0\% gain in overall reasoning performance and a 4.05 \\(\times\\) inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e.,  InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance.jpg)

> Hatched bars represent closed-source commercial models. We report average scores on a set of multimodal general, reasoning, text, and agentic benchmarks: MMBench v1.1 (en), MMStar,BLINK, HallusionBench, AI2D, OCRBench, MMVet, MME-RealWorld (en), MVBench, VideoMME, MMMU, MathVista, MathVision, MathVerse, DynaMath, WeMath, LogicVista, MATH500, AIME24, AIME25, GPQA, MMLU-Pro, GAOKAO, IFEval, SGP-Bench, VSI-Bench, ERQA, SpaCE-10, and OmniSpatial.

See [quick start](#quick-start) for how to use our model.

## InternVL3.5 Family

In the following table, we provide an overview of the InternVL3.5 series.
To maintain consistency with earlier generations, we provide two model formats: [the GitHub format](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B), consistent with prior releases, and [the HF format](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-HF), aligned with the official Transformers standard.

> If you want to convert the checkpoint between these two formats, please refer to the scripts about [custom2hf](https://github.com/OpenGVLab/InternVL/blob/main/internvl_chat/tools/internvl_custom2hf.py) and [hf2custom](https://github.com/OpenGVLab/InternVL/blob/main/internvl_chat/tools/internvl_hf2custom.py).


### Github Format


| Model                 | #Vision Param | #Language Param | #Total Param | HF Link                                                                        | ModelScope Link                                                                          |
| --------------------- | ------------- | --------------- | ------------ | ------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------- |
| InternVL3.5-1B        | 0.3B          | 0.8B            | 1.1B         | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B)                      | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B)                      |
| InternVL3.5-2B        | 0.3B          | 2.0B            | 2.3B         | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B)                      | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B)                      |
| InternVL3.5-4B        | 0.3B          | 4.4B            | 4.7B         | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B)                      | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B)                      |
| InternVL3.5-8B        | 0.3B          | 8.2B            | 8.5B         | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B)                      | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B)                      |
| InternVL3.5-14B       | 0.3B          | 14.8B           | 15.1B        | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B)                     | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B)                     |
| InternVL3.5-38B       | 5.5B          | 32.8B           | 38.4B        | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B)                     | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B)                     |
| InternVL3.5-20B-A4B   | 0.3B          | 20.9B           | 21.2B-A4B    | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview) |
| InternVL3.5-30B-A3B   | 0.3B          | 30.5B           | 30.8B-A3B    | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B)                 | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B)                 |
| InternVL3.5-241B-A28B | 5.5B          | 235.1B          | 240.7B-A28B  | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B)               | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B)               |


### HuggingFace Format


| Model                    | #Vision Param | #Language Param | #Total Param | HF Link                                                                           | ModelScope Link                                                                             |
| ------------------------ | ------------- | --------------- | ------------ | --------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- |
| InternVL3.5-1B-HF        | 0.3B          | 0.8B            | 1.1B         | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-HF)                      | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-HF)                      |
| InternVL3.5-2B-HF        | 0.3B          | 2.0B            | 2.3B         | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-HF)                      | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-HF)                      |
| InternVL3.5-4B-HF        | 0.3B          | 4.4B            | 4.7B         | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-HF)                      | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-HF)                      |
| InternVL3.5-8B-HF        | 0.3B          | 8.2B            | 8.5B         | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-HF)                      | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-HF)                      |
| InternVL3.5-14B-HF       | 0.3B          | 14.8B           | 15.1B        | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-HF)                     | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-HF)                     |
| InternVL3.5-38B-HF       | 5.5B          | 32.8B           | 38.4B        | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-HF)                     | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-HF)                     |
| InternVL3.5-20B-A4B-HF   | 0.3B          | 20.9B           | 21.2B-A4B    | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview-HF) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview-HF) |
| InternVL3.5-30B-A3B-HF   | 0.3B          | 30.5B           | 30.8B-A3B    | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-HF)                 | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-HF)                 |
| InternVL3.5-241B-A28B-HF | 5.5B          | 235.1B          | 240.7B-A28B  | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-HF)               | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-HF)               |


![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_overall.jpg)

> We conduct the evaluation with [VLMEvalkit](https://github.com/open-compass/VLMEvalKit). ***To enable the Thinking mode of our model, please set the system prompt to [R1_SYSTEM_PROMPT](https://github.com/open-compass/VLMEvalKit/blob/main/vlmeval/vlm/internvl/internvl_chat.py#L38).*** When enabling Thinking mode, we recommend setting `do_sample=True` and `temperature=0.6` to mitigate undesired repetition.

Our training pipeline comprises four stages: Multimodal Continual Pre-Training (**CPT**), Supervised Fine-Tuning (**SFT**), and Cascade Reinforcement Learning (**CascadeRL**). In CascadeRL, we first fine-tune the model using Mixed Preference Optimization (**MPO**) under an offline RL setting, followed by **GSPO** under an oneline RL setting.
For the Flash version of InternVL3.5, we additionally introduce a lightweight training stage, termed Visual Consistency Learning (**ViCO**), which reduces the token cost required to represent an image patch.

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/training_pipeline.jpg)

Here, we also open-source the model weights after different training stages for potential research usage.
***If you're unsure which version to use, please select the one without any suffix, as it has completed the full training pipeline.***


| Model                            | Training Pipeline     | HF Link                                                                     | ModelScope Link                                                                       |
| -------------------------------- | --------------------- | --------------------------------------------------------------------------- | ------------------------------------------------------------------------------------- |
| InternVL3.5-1B-Pretrained        | CPT                   | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-Pretrained)        | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-Pretrained)        |
| InternVL3.5-1B-Instruct          | CPT + SFT             | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-Instruct)          | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-Instruct)          |
| InternVL3.5-1B-MPO               | CPT + SFT + MPO       | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-MPO)               | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-MPO)               |
| InternVL3.5-1B                   | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-1B)                   | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B)                   |
| InternVL3.5-2B-Pretrained        | CPT                   | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-Pretrained)        | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-Pretrained)        |
| InternVL3.5-2B-Instruct          | CPT + SFT             | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-Instruct)          | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-Instruct)          |
| InternVL3.5-2B-MPO               | CPT + SFT + MPO       | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-MPO)               | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-MPO)               |
| InternVL3.5-2B                   | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-2B)                   | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B)                   |
| InternVL3.5-4B-Pretrained        | CPT                   | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-Pretrained)        | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-Pretrained)        |
| InternVL3.5-4B-Instruct          | CPT + SFT             | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-Instruct)          | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-Instruct)          |
| InternVL3.5-4B-MPO               | CPT + SFT + MPO       | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-MPO)               | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-MPO)               |
| InternVL3.5-4B                   | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-4B)                   | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B)                   |
| InternVL3.5-8B-Pretrained        | CPT                   | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-Pretrained)        | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-Pretrained)        |
| InternVL3.5-8B-Instruct          | CPT + SFT             | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-Instruct)          | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-Instruct)          |
| InternVL3.5-8B-MPO               | CPT + SFT + MPO       | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-MPO)               | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-MPO)               |
| InternVL3.5-8B                   | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-8B)                   | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B)                   |
| InternVL3.5-14B-Pretrained       | CPT                   | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-Pretrained)       | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-Pretrained)       |
| InternVL3.5-14B-Instruct         | CPT + SFT             | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-Instruct)         | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-Instruct)         |
| InternVL3.5-14B-MPO              | CPT + SFT + MPO       | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-MPO)              | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-MPO)              |
| InternVL3.5-14B                  | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-14B)                  | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B)                  |
| InternVL3.5-30B-A3B-Pretrained   | CPT                   | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-Pretrained)   | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-Pretrained)   |
| InternVL3.5-30B-A3B-Instruct     | CPT + SFT             | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-Instruct)     | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-Instruct)     |
| InternVL3.5-30B-A3B-MPO          | CPT + SFT + MPO       | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-MPO)          | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-MPO)          |
| InternVL3.5-30B-A3B              | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B)              | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B)              |
| InternVL3.5-38B-Pretrained       | CPT                   | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-Pretrained)       | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-Pretrained)       |
| InternVL3.5-38B-Instruct         | CPT + SFT             | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-Instruct)         | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-Instruct)         |
| InternVL3.5-38B-MPO              | CPT + SFT + MPO       | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-MPO)              | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-MPO)              |
| InternVL3.5-38B                  | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-38B)                  | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B)                  |
| InternVL3.5-241B-A28B-Pretrained | CPT                   | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-Pretrained) | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-Pretrained) |
| InternVL3.5-241B-A28B-Instruct   | CPT + SFT             | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-Instruct)   | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-Instruct)   |
| InternVL3.5-241B-A28B-MPO        | CPT + SFT + MPO       | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-MPO)        | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-MPO)        |
| InternVL3.5-241B-A28B            | CPT + SFT + CascadeRL | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B)            | [🤖 link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B)            |


The Flash version of our model will be released as soon as possible.



## Model Architecture

`InternVL3.5`:
This series of models follow the "ViT–MLP–LLM" paradigm adopted in previous versions of InternVL.
We initialize the language model using the Qwen3 series and GPT-OSS, and the vision encoder using InternViT-300M and InternViT-6B.
The Dynamic High Resolution strategy introduced in InternVL1.5 is also retained in our design.


`InternVL3.5-Flash`:
Compared to InternVL3.5, InternVL3.5-Flash further integrates the *Visual Resolution Router (ViR)*, thus yielding a series of  efficient variants friendly  suitable for  resource-constrained scenarios. 
Specifically, in InternVL3.5, each image patch is initially represented as 1024 visual tokens for the vision encoder, which are then compressed into 256 tokens via a pixel shuffle module before being passed to the Large Language Model (LLM).
In InternVL3.5-Flash, as shown in the Figure below, an additional pixel shuffle module with a higher compression rate is included, enabling the compression of visual tokens down to 64 tokens.
For each patch, the patch router determines the appropriate compression rate by assessing its semantic richness, and routes it to the corresponding pixel shuffle module accordingly.
Benefiting from this patch-aware compression mechanism, InternVL3.5-Flash is able to reduce the number of visual tokens by 50\% while maintaining nearly 100\% of the performance of InternVL3.5.


![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/architecture.jpg)

## Training and Deployment Strategy

### Pre-Training

During the pre-training stage, we update all model parameters jointly using the combination of large-scale text and multimodal corpora. Specifically, given an arbitrary training sample consisting of a multimodal token sequence \\(\mathbf{x}=\left(x_1, x_2, \ldots, x_L\right)\\), the next token prediction (NTP) loss is calculated on each text token as follows:

$$
    \mathcal{L}_{i}=-\log p_\theta\left(x_i \mid x_1, \ldots, x_{i-1}\right),
$$

where \\(x_i\\) is the predicted token and  prefix tokens in \\(\{x_1, x_2, \ldots, x_{i-1}\}\\) can be either  text tokens or  image tokens. Notably, for conversation samples, only response tokens  are included for the calculation of the loss.
Additionally, to mitigate bias toward either longer or shorter responses during training, we adopt the square averaging to re-weight the NTP loss  as follows:

$$
\mathcal{L}_{i}^{'} = \frac{w_i}{\sum_j w_j} \cdot \mathcal{L}_i, \quad w_i = \frac{1}{N^{0.5}},
$$

where \\(N\\) denotes the number of tokens in the training sample on which the loss needs to be calculated. The random JPEG compression is also included to enhance the model's real-world performance.

### Supervised Fine-Tuning

During the SFT phase, we adopt the same objective as in the pre-training stage and use the  square-root averaging strategy to calculate the final loss.  In this stage, the context window is set to 32K tokens to adapt long-context information.
Compared to InternVL3, the SFT stage of InternVL3.5 contains  more high-quality and  diverse training data derived from three sources: 

(1) Instruction-following data from InternVL3, which are reused to preserve broad coverage of vision–language tasks. 

(2) Multimodal reasoning data in the "Thinking" mode, which are included to instill long-thinking capabilities in the model. To construct such data, we first use InternVL3-78B to describe the image and then input the description into DeepSeek-R1 to sample rollouts with detailed reasoning processes. Rollouts with an incorrect final answer are filtered out. The questions in these datasets cover various expert domains, such as mathematics and scientific disciplines, thereby strengthening performance on different reasoning tasks. 

(3) Capability-expansion datasets, which endow InternVL3.5 with new skills, including GUI-based interaction, embodied interaction, and scalable vect

### Cascade Reinforcement Learning

Cascade RL aims to combine the benefits of offline RL and online RL to progressively facilitate the post-training of MLLMs in an efficient manner.
Specifically, we first fine-tune the model using an offline RL algorithm as an efficient warm-up stage to reach a satisfied results, which can guarantee the high-quality rollouts for the latter stage. 
Subsequently, we employ an online RL algorithm to further refine the output distribution based on rollouts generated by the model itself.  Compared to the single offline or online RL stage, our cascaded RL achieves significant performance improvements at a fraction of the GPU time cost.



During the offline RL stage, we employ mixed preference optimization (MPO) to fine-tune the model. Specifically, the training objective of MPO is a combination of preference loss \\(\mathcal{L}_{p}\\), quality loss \\(\mathcal{L}_{q}\\), and generation loss \\(\mathcal{L}_{g}\\), which can be formulated as follows:

$$
    \mathcal{L}_{\text{MPO}}=
    w_{p} \mathcal{L}_{p}
    +
    w_{q} \mathcal{L}_{q}
    +
    w_{g} \mathcal{L}_{g}
    ,
$$

where \\(w_{*}\\) represents the weight assigned to each loss component.
The DPO loss, BCO loss, and LM loss serve as the preference loss, quality loss, and generation loss, respectively.


During the online RL stage, we employ GSPO, without reference model constraints, as our online RL algorithm, which we find more effective in training both dense and mixture-of-experts (MoE) models. Similar to GRPO, the advantage is defined as the normalized reward across responses sampled from the same query.
The training objective of GSPO is given by:

$$
    \mathcal{L}_{\mathrm{GSPO}}(\theta)=\mathbb{E}_{x \sim \mathcal{D},\left\{y_i\right\}_{i=1}^G \sim \pi_{\theta \text { old }}(\cdot \mid x)}\left[\frac{1}{G} \sum_{i=1}^G \min \left(s_i(\theta) \widehat{A}_i, \operatorname{clip}\left(s_i(\theta), 1-\varepsilon, 1+\varepsilon\right) \widehat{A}_i\right)\right],
$$

where the importance sampling ratio is defined as the geometric mean of the per-token ratios.

> Please see [our paper](https://huggingface.co/papers/2508.18265) for more technical and experimental details.


### Visual Consistency Learning


We further include ViCO as an additional training stage to integrate the *visual resolution router (ViR)* into InternVL3.5, thereby reducing the inference cost of InternVL3.5. The obtained efficient version of InternVL3.5 are termed as *InternVL3.5-Flash*. In particular, ViCO comprises two stages:

`Consistency training`:
In this stage, the entire model is trained to minimize the divergence between response distributions conditioned on visual tokens with different compression rates.
In practice, we introduce an extra reference model, which is frozen and initialized with InternVL3.5.
Given a sample, each image patch is represented as either 256 or 64 tokens, and the training objective is defined as follows:


$$
\mathcal{L}_\text{ViCO} =
\mathbb{E}_{\xi \sim \mathcal{R}} \Bigg[
\frac{1}{N} \sum_{i=1}^{N} \mathrm{KL} \Big(
\pi_{\theta_{ref}}\left(y_i \mid y_{<i}, I\right) \;\Big\|\;
\pi_{\theta_{policy}}\left(y_i \mid y_{<i}, I_\xi\right)
\Big)
\Bigg],
$$

where \\(\mathrm{KL}\) denotes the KL divergence and \(\xi\) denotes the compression rate, which is uniformly sampled from \(\{\frac{1}{4},\frac{1}{16}\}\). The image \(I_\xi\) is represented as 256 tokens when \(\xi=\frac{1}{4}\) and 64 tokens when \(\xi=\frac{1}{16}\). Notably, the reference model always performs inference with \(\xi=\frac{1}{4}\).


`Router training`:
This stage aims to train the ViR to select an appropriate trade-off resolution for different inputs.
ViR is formulated as a binary classifier and trained using standard cross-entropy loss.
To construct the route targets, we first compute the KL divergence between the model outputs conditioned on uncompressed visual tokens (i.e., 256 tokens per patch) and those conditioned on compressed visual tokens (i.e., 64 tokens per patch).
During this stage, the main MLLM (ViT, MLP and LLM) is kept frozen, and only the ViR is trained.
Specifically, we first compute the loss ratio for each patch:

$$
r_i = \frac{\mathcal{L}_\text{ViCO}\big(y_i \mid I_{\frac{1}{16}}\big)}{\mathcal{L}_\text{ViCO}\big(y_i \mid I_{\frac{1}{4}}\big)},
$$

which quantifies the relative increase in loss caused by compressing the visual tokens. Based on this ratio, the binary ground-truth label for the patch router is defined as:

$$
y_i^\text{router} =
\begin{cases}
0, & r_i < \tau \; \text{(compression has negligible impact)} \\
1, & r_i \ge \tau \; \text{(compression has significant impact)},
\end{cases}
$$

where \(y_i^{\text{router}}=0\) and \(y_i^{\text{router}}=1\)  indicate that the compression rate \(\xi\) is set to \(\tfrac{1}{16}\) and \(\tfrac{1}{4}\), respectively.

> Please see [our paper](https://huggingface.co/papers/2508.18265) for more technical and experimental details.


### Test-Time Scaling


Test-time scaling (TTS) has been empirically demonstrated as an effective approach to enhance the reasoning capabilities of LLMs and MLLMs, particularly for complex tasks necessitating multi-step inference.
In this work, we implement a comprehensive test-time scaling approach that simultaneously improves reasoning depth (i.e., deep thinking) and breadth (i.e., parallel thinking).

`Deep Thinking`: By activating the Thinking mode, we guide the model to deliberately engage in step-by-step reasoning (i.e., decomposing complex problems into logical steps and validating intermediate conclusions) prior to generating the final answer. This approach systematically improves the logical structure of solutions for complex problems, particularly those requiring multi-step inference, and enhances reasoning depth.

`Parallel Thinking`: Following InternVL3, for reasoning tasks, we adopt the Best-of-N (BoN) strategy by employing [VisualPRM-v1.1](https://huggingface.co/OpenGVLab/VisualPRM-8B-v1_1) as the critic model to select the optimal response from multiple reasoning candidates.
This approach improves reasoning breadth.

> Notably, unless otherwise specified, the experimental results reported in our paper are obtained without applying TTS. Thus far, we have only applied TTS to reasoning benchmarks, since we found that the model already exhibits strong perception and understanding capabilities, and initiating TTS yields no significant improvement.


### Decoupled Vision-Language Deployment

In multimodal inference, the vision encoder and language model have distinct computational characteristics. The vision encoder that transforms images into semantic features is highly parallelizable and does not rely on long-term history state.  In contrast,  the language model adopts the inference in an autoregressive manner, which requires previous states to compute the next one. This sequential property makes the language part more sensitive to memory bandwidth and latency. 
When MLLMs are deployed online at scale, the vision and language models often block each other, thus incurring additional inference cost. This effect becomes more pronounced with larger vision models or higher-resolution images.

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/DvD.jpg)

As shown in the Figure above, we propose decoupled vision-language deployment (DvD) to address this issue by separating vision and language processing, with a particular focus on optimizing the prefilling stage. The vision subsystem batches and processes images to produce compact feature embeddings, which are then transmitted to the language subsystem for fusion with the text context prior to decoding. This separation alleviates blocking and brings multimodal prefilling performance closer to that of pure language models.
In our system implementation, the ViT and MLP (and ViR for InternVL3.5-Flash) are deployed on the vision server, while the language server executes only the LLM. The communication is unidirectional, transmitting BF16 visual features over TCP, with RDMA optionally employed to achieve higher transmission speed. Vision processing, feature transmission, and language processing are organized into an asynchronous three-stage pipeline, enabling overlapped execution and minimizing pipeline stalls.


DvD increases GPU utilization and processing efficiency on the vision side, while enabling the language server to focus exclusively on the LLM’s prefilling and decoding without being blocked by vision computation. This design leads to improved throughput and responsiveness. Moreover, the architecture supports independent hardware cost optimization for the vision and language modules, and facilitates the seamless integration of new modules without requiring modifications to the language server deployment.


## Evaluation on Multimodal Capability

### Multimodal Reasoning and Mathematics

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_reasoning.jpg)

### OCR, Chart, and Document Understanding

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_ocr.jpg)

### Multi-Image Understanding & Real-World Comprehension

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_multi_images.jpg)

### Comprehensive Multimodal Understanding & Multimodal Hallucination Evaluation

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_comprehensive.jpg)

### Visual Grounding

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_grounding.jpg)

### Multimodal Multilingual Understanding

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_multilingual.jpg)

### Video Understanding

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_video.jpg)

### GUI Tasks

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_gui.jpg)

### Embodied Tasks

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_embody.jpg)

### SVG Tasks

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_svg.jpg)

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_svg_gen.jpg)

## Evaluation on Language Capability

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_text.jpg)

## Ablation Study

### Cascade Reinforcement Learning

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/ablation_cascade_rl.jpg)

![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/ablation_cascade_rl_table.jpg)

### Decoupled Vision-Language Deployment


![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/ablation_dvd.jpg)

## Quick Start

We provide an example code to run `InternVL3.5-8B` using `transformers`. Please note that our models with up to 30B parameters can be deployed on a single A100 GPU, while the 38B model requires two A100 GPUs and the 235B model requires eight A100 GPUs.

> In most cases, both [LMDeploy](https://github.com/InternLM/lmdeploy) and [vLLM](https://github.com/vllm-project/vllm) can be used for model deployment. However, for InternVL3.5-20B-A4B, we recommend using vLLM since lmdeploy has not yet supported GPT-OSS.

> Please use transformers>=4.52.1 to ensure the model works normally. For the 20B version of our model, transformers>=4.55.0 is required.

### Model Loading

#### 16-bit (bf16 / fp16)

```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL3_5-8B"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
```

#### BNB 8-bit Quantization

```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL3_5-8B"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    load_in_8bit=True,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval()
```

#### Multiple GPUs

```python
import math
import torch
from transformers import AutoTokenizer, AutoModel

path = "OpenGVLab/InternVL3_5-8B"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True,
    device_map="auto").eval()
```

### Thinking Mode

To enable thinking mode, please set the system prompt to our Thinking System Prompt. When enabling Thinking mode, we recommend setting `do_sample=True` and `temperature=0.6` to mitigate undesired repetition.

```python
R1_SYSTEM_PROMPT = """
You are an AI assistant that rigorously follows this response protocol:

1. First, conduct a detailed analysis of the question. Consider different angles, potential solutions, and reason through the problem step-by-step. Enclose this entire thinking process within <think> and </think> tags.

2. After the thinking section, provide a clear, concise, and direct answer to the user's question. Separate the answer from the think section with a newline.

Ensure that the thinking process is thorough but remains focused on the query. The final answer should be standalone and not reference the thinking section.
""".strip()

model.system_message = R1_SYSTEMP_PROMPT
```

### Inference with Transformers

```python
import math
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

path = 'OpenGVLab/InternVL3_5-8B'
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    load_in_8bit=False,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True,
    device_map="auto").eval()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

# set the max number of tiles in `max_num`
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)

# pure-text conversation (纯文本对话)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# single-image single-round conversation (单图单轮对话)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')

# single-image multi-round conversation (单图多轮对话)
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)

question = '<image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]

question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list,
                               history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list,
                               history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# batch inference, single image per sample (单图批处理)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)

questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
responses = model.batch_chat(tokenizer, pixel_values,
                             num_patches_list=num_patches_list,
                             questions=questions,
                             generation_config=generation_config)
for question, response in zip(questions, responses):
    print(f'User: {question}\nAssistant: {response}')

# video multi-round conversation (视频多轮对话)
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
    if bound:
        start, end = bound[0], bound[1]
    else:
        start, end = -100000, 100000
    start_idx = max(first_idx, round(start * fps))
    end_idx = min(round(end * fps), max_frame)
    seg_size = float(end_idx - start_idx) / num_segments
    frame_indices = np.array([
        int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
        for idx in range(num_segments)
    ])
    return frame_indices

def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    max_frame = len(vr) - 1
    fps = float(vr.get_avg_fps())

    pixel_values_list, num_patches_list = [], []
    transform = build_transform(input_size=input_size)
    frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
    for frame_index in frame_indices:
        img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
        img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
        pixel_values = [transform(tile) for tile in img]
        pixel_values = torch.stack(pixel_values)
        num_patches_list.append(pixel_values.shape[0])
        pixel_values_list.append(pixel_values)
    pixel_values = torch.cat(pixel_values_list)
    return pixel_values, num_patches_list

video_path = './examples/red-panda.mp4'
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
question = video_prefix + 'What is the red panda doing?'
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'Describe this video in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
```

#### Streaming Output

Besides this method, you can also use the following code to get streamed output.

```python
from transformers import TextIteratorStreamer
from threading import Thread

# Initialize the streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
# Define the generation configuration
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
# Start the model chat in a separate thread
thread = Thread(target=model.chat, kwargs=dict(
    tokenizer=tokenizer, pixel_values=pixel_values, question=question,
    history=None, return_history=False, generation_config=generation_config,
))
thread.start()

# Initialize an empty string to store the generated text
generated_text = ''
# Loop through the streamer to get the new text as it is generated
for new_text in streamer:
    if new_text == model.conv_template.sep:
        break
    generated_text += new_text
    print(new_text, end='', flush=True)  # Print each new chunk of generated text on the same line
```

## Finetune

Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTuner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.

## Deployment

### LMDeploy

LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.

```sh
pip install lmdeploy>=0.9.1
```

LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.

#### A 'Hello, world' Example

```python
from lmdeploy import pipeline, PytorchEngineConfig
from lmdeploy.vl import load_image

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')

# Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
model = 'OpenGVLab/InternVL3_5-8B'
pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))

response = pipe(('describe this image', image))
print(response.text)
```

#### Multi-images Inference

When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.

```python
from lmdeploy import pipeline, PytorchEngineConfig
from lmdeploy.vl import load_image
from lmdeploy.vl.constants import IMAGE_TOKEN

# Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
model = 'OpenGVLab/InternVL3_5-8B'
pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))

image_urls=[
    'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
    'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
]

images = [load_image(img_url) for img_url in image_urls]
# Numbering images improves multi-image conversations
response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
print(response.text)
```

#### Batch Prompts Inference

Conducting inference with batch prompts is quite straightforward; just place them within a list structure:

```python
from lmdeploy import pipeline, PytorchEngineConfig
from lmdeploy.vl import load_image

# Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
model = 'OpenGVLab/InternVL3_5-8B'
pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))

image_urls=[
    "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
    "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
]
prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
response = pipe(prompts)
print(response)
```

#### Multi-turn Conversation

There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.

```python
from lmdeploy import pipeline, PytorchEngineConfig, GenerationConfig
from lmdeploy.vl import load_image

# Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
model = 'OpenGVLab/InternVL3_5-8B'
pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
gen_config = GenerationConfig(top_k=50, top_p=0.95, temperature=0.6, max_new_tokens=8192)
sess = pipe.chat(('describe this image', image), gen_config=gen_config)
print(sess.response.text)
sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
print(sess.response.text)
```

#### Service

LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:

```shell
lmdeploy serve api_server OpenGVLab/InternVL3_5-8B --server-port 23333 --tp 1 --backend pytorch
```

To use the OpenAI-style interface, you need to install OpenAI:

```shell
pip install openai
```

Then, use the code below to make the API call:

```python
from openai import OpenAI

client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
    model=model_name,
    messages=[{
        'role':
        'user',
        'content': [{
            'type': 'text',
            'text': 'describe this image',
        }, {
            'type': 'image_url',
            'image_url': {
                'url':
                'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
            },
        }],
    }],
    temperature=0.8,
    top_p=0.8)
print(response)
```

## License

This project is released under the apache-2.0 License. This project uses the pre-trained Qwen3 as a component, which is licensed under the apache-2.0 License.

## Citation

If you find this project useful in your research, please consider citing:

```BibTeX
@article{wang2025internvl3_5,
  title={InternVL3.5: Advancing Open-Source Multimodal Models in Versatility, Reasoning, and Efficiency},
  author={Wang, Weiyun and Gao, Zhangwei and Gu, Lixin and Pu, Hengjun and Cui, Long and Wei, Xingguang and Liu, Zhaoyang and Jing, Linglin and Ye, Shenglong and Shao, Jie and others},
  journal={arXiv preprint arXiv:2508.18265},
  year={2025}
}
```