MaziyarPanahi commited on
Commit
d8b4bd0
·
verified ·
1 Parent(s): 4e3cf0f

feat: Upload fine-tuned medical NER model OpenMed-ZeroShot-NER-Anatomy-Large-459M

Browse files
README.md ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ widget:
3
+ - text: "The patient complained of pain in the left ventricle region."
4
+ - text: "Examination revealed inflammation of the hippocampus."
5
+ - text: "The liver showed signs of fatty infiltration."
6
+ - text: "An MRI of the cerebrum showed no signs of abnormalities."
7
+ - text: "The procedure involved an incision near the femoral artery."
8
+ tags:
9
+ - token-classification
10
+ - entity recognition
11
+ - named-entity-recognition
12
+ - zero-shot
13
+ - zero-shot-ner
14
+ - zero shot
15
+ - biomedical-nlp
16
+ - gliner
17
+ - anatomical-entity-recognition
18
+ - medical-terminology
19
+ - anatomy
20
+ - healthcare
21
+ - anatomy
22
+ - body_part
23
+ - organ
24
+ language:
25
+ - en
26
+ license: apache-2.0
27
+ ---
28
+
29
+ # 🧬 [OpenMed-ZeroShot-NER-Anatomy-Large-459M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Anatomy-Large-459M)
30
+
31
+ **Specialized model for Anatomical Entity Recognition - Anatomical structures and body parts**
32
+
33
+ [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
34
+ [![Python](https://img.shields.io/badge/Python-3.11%2B-blue)]()
35
+ [![GliNER](https://img.shields.io/badge/🤗-GliNER-yellow)]()
36
+ [![OpenMed](https://img.shields.io/badge/🏥-OpenMed-green)](https://huggingface.co/OpenMed)
37
+
38
+ ## 📋 Model Overview
39
+
40
+ Tailored to **anatomical structure recognition**, including organs, tissues, and substructures in clinical narratives.Supports **radiology and surgical note parsing**, **site-of-disease extraction**, and **anatomy-aware analytics**.
41
+
42
+ OpenMed ZeroShot NER is an advanced, domain-adapted Named Entity Recognition (NER) model designed specifically for medical, biomedical, and clinical text mining. Leveraging state-of-the-art zero-shot learning, this model empowers researchers, clinicians, and data scientists to extract expert-level biomedical entities—such as diseases, chemicals, genes, species, and clinical findings—directly from unstructured text, without the need for task-specific retraining.
43
+
44
+ Built on the robust GLiNER architecture and fine-tuned on curated biomedical corpora, OpenMed ZeroShot NER delivers high-precision entity recognition for critical healthcare and life sciences applications. Its zero-shot capability means you can flexibly define and extract any entity type relevant to your workflow, from standard biomedical categories to custom clinical concepts, supporting rapid adaptation to new research domains and regulatory requirements.
45
+
46
+ Whether you are working on clinical NLP, biomedical research, electronic health record (EHR) de-identification, or large-scale literature mining, OpenMed ZeroShot NER provides a production-ready, open-source solution that combines expert-level accuracy with unmatched flexibility. Join the OpenMed community to accelerate your medical text analytics with cutting-edge, zero-shot NER technology.
47
+
48
+ ### 🎯 Key Features
49
+ - **Zero-Shot Capability**: Can recognize any entity type without specific training
50
+ - **High Precision**: Optimized for biomedical entity recognition
51
+ - **Domain-Specific**: Fine-tuned on curated ANATOMY dataset
52
+ - **Production-Ready**: Validated on clinical benchmarks
53
+ - **Easy Integration**: Compatible with Hugging Face Transformers ecosystem
54
+ - **Flexible Entity Recognition**: Add custom entity types without retraining
55
+
56
+ ### 🏷️ Supported Entity Types
57
+
58
+ This zero-shot model can identify and classify biomedical entities, including but not limited to these entity types. **You can also add custom entity types without retraining the model**:
59
+
60
+ - `Anatomy`
61
+
62
+ **💡 Zero-Shot Flexibility**: As a GliNER-based model, you can specify any entity types you want to detect, even if they weren't part of the original training. Simply provide the entity labels when using the model, and it will adapt to recognize them.
63
+
64
+ ## 📊 Dataset
65
+
66
+ Anatomy corpus focuses on anatomical entity recognition for medical terminology and healthcare applications.
67
+
68
+ The Anatomy corpus is a specialized biomedical NER dataset designed for recognizing anatomical entities and medical terminology in clinical and biomedical texts. This corpus contains annotations for anatomical structures, body parts, organs, and physiological systems mentioned in medical literature. It is essential for developing clinical NLP systems, medical education tools, and healthcare informatics applications where accurate anatomical entity identification is crucial. The dataset supports the development of automated systems for medical coding, clinical decision support, and anatomical knowledge extraction from medical records and literature. It serves as a valuable resource for training NER models used in medical imaging, surgical planning, and clinical documentation.
69
+
70
+
71
+ ## 📊 Performance Metrics
72
+
73
+ ### Current Model Performance
74
+
75
+ - **Finetuned F1 vs. Base Model (on test dataset excluded from training)**: `0.93`
76
+ - **F1 Improvement vs Base Model**: `211.3%`
77
+
78
+ ### 🏆 Top F1 Improvements on ANATOMY Dataset
79
+
80
+ | Rank | Model | Base F1 | Finetuned F1 | ΔF1 | ΔF1 % |
81
+ |------|-------|--------:|------------:|----:|------:|
82
+ | 🥇 1 | [OpenMed-ZeroShot-NER-Anatomy-Large-459M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Anatomy-Large-459M) | 0.2978 | 0.9271 | 0.6293 | 211.3% |
83
+ | 🥈 2 | [OpenMed-ZeroShot-NER-Anatomy-Medium-209M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Anatomy-Medium-209M) | 0.3172 | 0.9114 | 0.5942 | 187.3% |
84
+ | 🥉 3 | [OpenMed-ZeroShot-NER-Anatomy-XLarge-770M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Anatomy-XLarge-770M) | 0.3780 | 0.9021 | 0.5241 | 138.7% |
85
+ | 4 | [OpenMed-ZeroShot-NER-Anatomy-Base-220M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Anatomy-Base-220M) | 0.2804 | 0.8627 | 0.5823 | 207.7% |
86
+ | 5 | [OpenMed-ZeroShot-NER-Anatomy-Multi-209M](https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Anatomy-Multi-209M) | 0.3121 | 0.8091 | 0.4969 | 159.2% |
87
+
88
+
89
+ *Rankings are sorted by finetuned F1 and show ΔF1% over base model. Test dataset is excluded from training.*
90
+
91
+ ![OpenMed ZeroShot Clinical & Biomedical NER vs. Original GLiNER models](https://huggingface.co/spaces/OpenMed/README/resolve/main/openmed-zero-shot-clinical-ner-finetuned.png)
92
+
93
+ *Figure: OpenMed ZeroShot Clinical & Biomedical NER vs. Original GLiNER models.*
94
+
95
+ ## 🚀 Quick Start
96
+
97
+ ### Installation
98
+
99
+ ```bash
100
+ pip install gliner==0.2.21
101
+ ```
102
+
103
+ ### Usage
104
+
105
+ ```python
106
+ from transformers import pipeline
107
+
108
+ # Load the model and tokenizer
109
+ # Model: https://huggingface.co/OpenMed/OpenMed-ZeroShot-NER-Anatomy-Large-459M
110
+ model_name = "OpenMed/OpenMed-ZeroShot-NER-Anatomy-Large-459M"
111
+
112
+ from gliner import GLiNER
113
+ model = GLiNER.from_pretrained("OpenMed-ZeroShot-NER-Anatomy-Large-459M")
114
+
115
+ # Example usage with default entity types
116
+ text = "The patient complained of pain in the left ventricle region."
117
+
118
+ labels = ['Anatomy']
119
+ entities = model.predict_entities(text, labels, flat_ner=True, threshold=0.5)
120
+ for entity in entities:
121
+ print(entity)
122
+ ```
123
+
124
+ ### Zero-Shot Usage with Custom Entity Types
125
+ 💡 **Tip:** If you want to extract entities that are not present in the original training set (i.e., use custom or rare entity types), you may get better results by lowering the `threshold` parameter in `model.predict_entities`. For example, try `threshold=0.3` or even lower, depending on your use case:
126
+
127
+ ```python
128
+ # You can specify custom entity types for zero-shot recognition - for instance:
129
+ custom_entities = ["MISC", "Anatomy", "PERSON", "LOCATION", "MEDICATION", "PROCEDURE"]
130
+
131
+ entities = model.predict_entities(text, custom_entities, flat_ner=True, threshold=0.1)
132
+ for entity in entities:
133
+ print(entity)
134
+ ```
135
+
136
+ > Lowering the threshold makes the model more permissive and can help it recognize new or less common entity types, but may also increase false positives. Adjust as needed for your application.
137
+
138
+ ## 📚 Dataset Information
139
+
140
+ - **Dataset**: ANATOMY
141
+ - **Description**: Anatomical Entity Recognition - Anatomical structures and body parts
142
+
143
+ ### Training Details
144
+ - **Base Model**: gliner_large-v2.1
145
+ - **Training Framework**: Hugging Face Transformers
146
+ - **Optimization**: AdamW optimizer with learning rate scheduling
147
+ - **Validation**: Cross-validation on held-out test set
148
+
149
+ ## 💡 Use Cases
150
+
151
+ This model is particularly useful for:
152
+ - **Clinical Text Mining**: Extracting entities from medical records
153
+ - **Biomedical Research**: Processing scientific literature
154
+ - **Drug Discovery**: Identifying chemical compounds and drugs
155
+ - **Healthcare Analytics**: Analyzing patient data and outcomes
156
+ - **Academic Research**: Supporting biomedical NLP research
157
+ - **Custom Entity Recognition**: Zero-shot detection of domain-specific entities
158
+
159
+ ## 🔬 Model Architecture
160
+
161
+ - **Task**: Zero-Shot Classification (Named Entity Recognition)
162
+ - **Labels**: Dataset-specific entity types
163
+ - **Input**: Biomedical text
164
+ - **Output**: Named entity predictions
165
+
166
+ ## 📜 License
167
+
168
+ Licensed under the Apache License 2.0. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.
169
+
170
+ ## 🤝 Contributing
171
+
172
+ I welcome contributions of all kinds! Whether you have ideas, feature requests, or want to join my mission to advance open-source Healthcare AI, I'd love to hear from you.
173
+
174
+ Follow [OpenMed Org](https://huggingface.co/OpenMed) on Hugging Face 🤗 and click "Watch" to stay updated on my latest releases and developments.
175
+
176
+ ## Citation
177
+
178
+ If you use this model in your research or applications, please cite the following paper:
179
+
180
+ ```latex
181
+ @misc{panahi2025openmedneropensourcedomainadapted,
182
+ title={OpenMed NER: Open-Source, Domain-Adapted State-of-the-Art Transformers for Biomedical NER Across 12 Public Datasets},
183
+ author={Maziyar Panahi},
184
+ year={2025},
185
+ eprint={2508.01630},
186
+ archivePrefix={arXiv},
187
+ primaryClass={cs.CL},
188
+ url={https://arxiv.org/abs/2508.01630},
189
+ }
190
+ ```
191
+
192
+ Proper citation helps support and acknowledge my work. Thank you!
193
+
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "<<ENT>>": 128002,
3
+ "<<SEP>>": 128003,
4
+ "[FLERT]": 128001,
5
+ "[MASK]": 128000
6
+ }
gliner_config.json ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "class_token_index": 128002,
3
+ "dropout": 0.4,
4
+ "embed_ent_token": true,
5
+ "encoder_config": {
6
+ "_name_or_path": "microsoft/deberta-v3-large",
7
+ "add_cross_attention": false,
8
+ "architectures": null,
9
+ "attention_probs_dropout_prob": 0.1,
10
+ "bad_words_ids": null,
11
+ "begin_suppress_tokens": null,
12
+ "bos_token_id": null,
13
+ "chunk_size_feed_forward": 0,
14
+ "cross_attention_hidden_size": null,
15
+ "decoder_start_token_id": null,
16
+ "diversity_penalty": 0.0,
17
+ "do_sample": false,
18
+ "early_stopping": false,
19
+ "encoder_no_repeat_ngram_size": 0,
20
+ "eos_token_id": null,
21
+ "exponential_decay_length_penalty": null,
22
+ "finetuning_task": null,
23
+ "forced_bos_token_id": null,
24
+ "forced_eos_token_id": null,
25
+ "hidden_act": "gelu",
26
+ "hidden_dropout_prob": 0.1,
27
+ "hidden_size": 1024,
28
+ "id2label": {
29
+ "0": "LABEL_0",
30
+ "1": "LABEL_1"
31
+ },
32
+ "initializer_range": 0.02,
33
+ "intermediate_size": 4096,
34
+ "is_decoder": false,
35
+ "is_encoder_decoder": false,
36
+ "label2id": {
37
+ "LABEL_0": 0,
38
+ "LABEL_1": 1
39
+ },
40
+ "layer_norm_eps": 1e-07,
41
+ "legacy": true,
42
+ "length_penalty": 1.0,
43
+ "max_length": 20,
44
+ "max_position_embeddings": 512,
45
+ "max_relative_positions": -1,
46
+ "min_length": 0,
47
+ "model_type": "deberta-v2",
48
+ "no_repeat_ngram_size": 0,
49
+ "norm_rel_ebd": "layer_norm",
50
+ "num_attention_heads": 16,
51
+ "num_beam_groups": 1,
52
+ "num_beams": 1,
53
+ "num_hidden_layers": 24,
54
+ "num_return_sequences": 1,
55
+ "output_attentions": false,
56
+ "output_hidden_states": false,
57
+ "output_scores": false,
58
+ "pad_token_id": 0,
59
+ "pooler_dropout": 0,
60
+ "pooler_hidden_act": "gelu",
61
+ "pooler_hidden_size": 1024,
62
+ "pos_att_type": [
63
+ "p2c",
64
+ "c2p"
65
+ ],
66
+ "position_biased_input": false,
67
+ "position_buckets": 256,
68
+ "prefix": null,
69
+ "problem_type": null,
70
+ "pruned_heads": {},
71
+ "relative_attention": true,
72
+ "remove_invalid_values": false,
73
+ "repetition_penalty": 1.0,
74
+ "return_dict": true,
75
+ "return_dict_in_generate": false,
76
+ "sep_token_id": null,
77
+ "share_att_key": true,
78
+ "suppress_tokens": null,
79
+ "task_specific_params": null,
80
+ "temperature": 1.0,
81
+ "tf_legacy_loss": false,
82
+ "tie_encoder_decoder": false,
83
+ "tie_word_embeddings": true,
84
+ "tokenizer_class": null,
85
+ "top_k": 50,
86
+ "top_p": 1.0,
87
+ "torch_dtype": null,
88
+ "torchscript": false,
89
+ "type_vocab_size": 0,
90
+ "typical_p": 1.0,
91
+ "use_bfloat16": false,
92
+ "vocab_size": 128004
93
+ },
94
+ "ent_token": "<<ENT>>",
95
+ "eval_every": 5000,
96
+ "fine_tune": true,
97
+ "fuse_layers": false,
98
+ "has_rnn": true,
99
+ "hidden_size": 512,
100
+ "labels_encoder": null,
101
+ "labels_encoder_config": null,
102
+ "lr_encoder": "1e-5",
103
+ "lr_others": "5e-5",
104
+ "max_len": 384,
105
+ "max_neg_type_ratio": 1,
106
+ "max_types": 25,
107
+ "max_width": 12,
108
+ "model_name": "microsoft/deberta-v3-large",
109
+ "model_type": "gliner",
110
+ "name": "correct",
111
+ "num_post_fusion_layers": 1,
112
+ "num_steps": 30000,
113
+ "post_fusion_schema": "",
114
+ "random_drop": true,
115
+ "sep_token": "<<SEP>>",
116
+ "shuffle_types": true,
117
+ "size_sup": -1,
118
+ "span_mode": "markerV0",
119
+ "subtoken_pooling": "first",
120
+ "train_batch_size": 8,
121
+ "transformers_version": "4.53.2",
122
+ "vocab_size": 128004,
123
+ "warmup_ratio": 3000,
124
+ "words_splitter_type": "whitespace"
125
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37e527b0b5a0068e91c7fd730ff59dae685eb2ed1ae6f942fdda2c89553ae69b
3
+ size 1782005383
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": {
9
+ "content": "[UNK]",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ }
15
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
test_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "eval_loss": 85.54129028320312,
3
+ "seqeval_accuracy": 0.9867157253893667,
4
+ "seqeval_f1": 0.9270598345686971,
5
+ "seqeval_precision": 0.9194545067121245,
6
+ "seqeval_recall": 0.9347920277296361
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128001": {
44
+ "content": "[FLERT]",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "128002": {
52
+ "content": "<<ENT>>",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "128003": {
60
+ "content": "<<SEP>>",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ }
67
+ },
68
+ "bos_token": "[CLS]",
69
+ "clean_up_tokenization_spaces": false,
70
+ "cls_token": "[CLS]",
71
+ "do_lower_case": false,
72
+ "eos_token": "[SEP]",
73
+ "extra_special_tokens": {},
74
+ "mask_token": "[MASK]",
75
+ "model_max_length": 1000000000000000019884624838656,
76
+ "pad_token": "[PAD]",
77
+ "sep_token": "[SEP]",
78
+ "sp_model_kwargs": {},
79
+ "split_by_punct": false,
80
+ "tokenizer_class": "DebertaV2Tokenizer",
81
+ "unk_token": "[UNK]",
82
+ "vocab_type": "spm"
83
+ }