File size: 8,763 Bytes
9d43dda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
#!/usr/bin/env python3
"""
PURE BINARY TRANSFORMER - BITS ALL THE WAY DOWN
- Vocab = 2 (0 and 1)
- Weights = binary (-1 or +1, stored as bits)
- Activations = binary where possible
Uses Straight-Through Estimator (STE) for gradients.
XNOR + popcount for matmul = insanely fast on hardware.
"""
import sys
import math
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import deque
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Config for pure binary transformer
CONFIG = {
"d": 256, # must be divisible by heads
"layers": 6,
"heads": 8,
"vocab": 2, # 0 and 1
"ctx": 2048,
}
LR = 1e-3
UPDATE_EVERY = 256
PRINT_EVERY = 50000
# ============== BINARY LAYERS ==============
class BinarySign(torch.autograd.Function):
"""Binarize to -1/+1 with straight-through estimator"""
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x.sign()
@staticmethod
def backward(ctx, grad_output):
x, = ctx.saved_tensors
# STE: pass gradient through if |x| <= 1
grad_input = grad_output.clone()
grad_input[x.abs() > 1] = 0
return grad_input
def binarize(x):
return BinarySign.apply(x)
class BinaryLinear(nn.Module):
"""Linear layer with binary weights (-1/+1)"""
def __init__(self, in_features, out_features, bias=False):
super().__init__()
self.in_features = in_features
self.out_features = out_features
# Real-valued weights for training, binarized during forward
self.weight = nn.Parameter(torch.randn(out_features, in_features) * 0.1)
if bias:
self.bias = nn.Parameter(torch.zeros(out_features))
else:
self.bias = None
def forward(self, x):
# Binarize weights to -1/+1
binary_weight = binarize(self.weight)
# Scale factor for better gradients (from XNOR-Net paper)
# alpha = mean(|W|)
alpha = self.weight.abs().mean()
out = F.linear(x, binary_weight * alpha, self.bias)
return out
class BinaryAttention(nn.Module):
"""Attention with binary QKV projections"""
def __init__(self, d, h):
super().__init__()
self.h, self.dk = h, d // h
self.q_proj = BinaryLinear(d, d)
self.k_proj = BinaryLinear(d, d)
self.v_proj = BinaryLinear(d, d)
self.out_proj = BinaryLinear(d, d)
def forward(self, x, mask=None):
B, N, D = x.shape
q = self.q_proj(x).view(B, N, self.h, self.dk).transpose(1, 2)
k = self.k_proj(x).view(B, N, self.h, self.dk).transpose(1, 2)
v = self.v_proj(x).view(B, N, self.h, self.dk).transpose(1, 2)
# Standard attention (values stay real for now)
att = (q @ k.transpose(-1, -2)) / math.sqrt(self.dk)
if mask is not None:
att = att + mask
att = F.softmax(att, dim=-1)
out = (att @ v).transpose(1, 2).reshape(B, N, D)
return self.out_proj(out)
class BinaryMLP(nn.Module):
"""MLP with binary weights"""
def __init__(self, d):
super().__init__()
self.fc1 = BinaryLinear(d, d * 4)
self.fc2 = BinaryLinear(d * 4, d)
def forward(self, x):
# Binary weights, but ReLU activation (could binarize this too)
x = F.gelu(self.fc1(x))
return self.fc2(x)
class BinaryBlock(nn.Module):
def __init__(self, d, h):
super().__init__()
self.ln1 = nn.LayerNorm(d)
self.attn = BinaryAttention(d, h)
self.ln2 = nn.LayerNorm(d)
self.mlp = BinaryMLP(d)
def forward(self, x, mask):
x = x + self.attn(self.ln1(x), mask)
return x + self.mlp(self.ln2(x))
class PureBinaryTransformer(nn.Module):
"""
Transformer where:
- Input vocab = 2 (bits)
- All linear weights are binary (-1/+1)
"""
def __init__(self, cfg):
super().__init__()
d, L, h = cfg["d"], cfg["layers"], cfg["heads"]
# Embeddings stay real (only 2 of them anyway)
self.emb = nn.Embedding(2, d)
# Binary blocks
self.blocks = nn.ModuleList([BinaryBlock(d, h) for _ in range(L)])
self.ln = nn.LayerNorm(d)
self.head = BinaryLinear(d, 2) # Binary output projection too!
def forward(self, x):
B, N = x.shape
mask = torch.triu(torch.ones(N, N, device=x.device), 1) * -1e9
h = self.emb(x)
for block in self.blocks:
h = block(h, mask)
return self.head(self.ln(h))
def count_params(self):
return sum(p.numel() for p in self.parameters())
def count_binary_params(self):
"""Count params that are binarized"""
count = 0
for name, module in self.named_modules():
if isinstance(module, BinaryLinear):
count += module.weight.numel()
return count
def byte_to_bits(byte_val):
return [(byte_val >> (7 - i)) & 1 for i in range(8)]
class BinaryTrainer:
def __init__(self, model, lr=LR):
self.model = model.to(DEVICE)
self.opt = torch.optim.AdamW(model.parameters(), lr=lr)
self.ctx_size = CONFIG["ctx"]
self.buffer = deque(maxlen=self.ctx_size + 1)
self.bits_seen = 0
self.bytes_seen = 0
self.total_loss = 0.0
self.updates = 0
self.start_time = time.time()
def ingest_byte(self, byte_val):
bits = byte_to_bits(byte_val)
for bit in bits:
self.buffer.append(bit)
self.bits_seen += 1
if len(self.buffer) >= UPDATE_EVERY + 1 and self.bits_seen % UPDATE_EVERY == 0:
self._update()
self.bytes_seen += 1
if self.bits_seen % PRINT_EVERY == 0:
self._print_stats()
if self.bytes_seen % 500000 == 0 and self.bytes_seen > 0:
self._save()
def _update(self):
tokens = list(self.buffer)
x = torch.tensor(tokens[:-1], device=DEVICE, dtype=torch.long).unsqueeze(0)
y = torch.tensor(tokens[1:], device=DEVICE, dtype=torch.long).unsqueeze(0)
self.model.train()
logits = self.model(x)
loss = F.cross_entropy(
logits[:, -UPDATE_EVERY:].reshape(-1, 2),
y[:, -UPDATE_EVERY:].reshape(-1)
)
self.opt.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.opt.step()
self.total_loss += loss.item()
self.updates += 1
def _print_stats(self):
elapsed = time.time() - self.start_time
bytes_per_sec = self.bytes_seen / elapsed if elapsed > 0 else 0
avg_loss = self.total_loss / max(1, self.updates)
entropy = avg_loss / math.log(2)
compression = (1.0 - entropy) * 100
print(f"[{elapsed:.0f}s] {self.bytes_seen/1000:.1f}KB | {bytes_per_sec/1000:.2f} KB/s | "
f"loss={avg_loss:.4f} | entropy={entropy:.3f} | compression={compression:.1f}%", flush=True)
def _save(self):
avg_loss = self.total_loss / max(1, self.updates)
kb = self.bytes_seen // 1000
ckpt = {
"model": self.model.state_dict(),
"bits": self.bits_seen,
"bytes": self.bytes_seen,
"loss": avg_loss,
}
torch.save(ckpt, f"/workspace/purebit_ckpt_{kb}kb.pt")
print(f"[SAVED] purebit_ckpt_{kb}kb.pt", flush=True)
def main():
print(f"PURE BINARY TRANSFORMER - BITS ALL THE WAY DOWN", flush=True)
print(f"Config: {CONFIG}", flush=True)
print(f"Device: {DEVICE}", flush=True)
model = PureBinaryTransformer(CONFIG)
total_params = model.count_params()
binary_params = model.count_binary_params()
print(f"Total Parameters: {total_params:,} ({total_params/1e6:.2f}M)", flush=True)
print(f"Binary Parameters: {binary_params:,} ({binary_params/total_params*100:.1f}%)", flush=True)
print(f"Vocab: 2 (input bits)", flush=True)
print(f"Weights: BINARY (-1/+1)", flush=True)
print(f"", flush=True)
print(f"🔥 BITS IN, BITS WEIGHTS, BITS OUT 🔥", flush=True)
trainer = BinaryTrainer(model)
print(f"Listening for bytes...", flush=True)
while True:
byte = sys.stdin.buffer.read(1)
if not byte:
break
trainer.ingest_byte(byte[0])
print(f"Done. {trainer.bytes_seen:,} bytes = {trainer.bits_seen:,} bits", flush=True)
if __name__ == "__main__":
main()
|