|
|
|
|
|
""" |
|
|
BINARY TRANSFORMER - Raw network bytes → neural network |
|
|
No tokenizer. No preprocessing. Just bytes. |
|
|
|
|
|
Vocab = 256 (one token per byte value 0x00-0xFF) |
|
|
Input: Raw bytes from network stream via stdin |
|
|
""" |
|
|
|
|
|
import sys |
|
|
import math |
|
|
import time |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from collections import deque |
|
|
|
|
|
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
|
|
|
|
|
CONFIG = { |
|
|
"d": 128, |
|
|
"layers": 3, |
|
|
"heads": 4, |
|
|
"vocab": 256, |
|
|
"ctx": 1024, |
|
|
} |
|
|
|
|
|
LR = 3e-4 |
|
|
UPDATE_EVERY = 64 |
|
|
PRINT_EVERY = 50000 |
|
|
|
|
|
class ByteAttention(nn.Module): |
|
|
def __init__(self, d, h): |
|
|
super().__init__() |
|
|
self.h, self.dk = h, d // h |
|
|
self.qkv = nn.Linear(d, 3 * d, bias=False) |
|
|
self.proj = nn.Linear(d, d, bias=False) |
|
|
|
|
|
def forward(self, x, mask=None): |
|
|
B, N, D = x.shape |
|
|
qkv = self.qkv(x).view(B, N, 3, self.h, self.dk).permute(2, 0, 3, 1, 4) |
|
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
att = (q @ k.transpose(-1, -2)) / math.sqrt(self.dk) |
|
|
if mask is not None: |
|
|
att = att + mask |
|
|
return self.proj((F.softmax(att, -1) @ v).transpose(1, 2).reshape(B, N, D)) |
|
|
|
|
|
class ByteBlock(nn.Module): |
|
|
def __init__(self, d, h): |
|
|
super().__init__() |
|
|
self.ln1, self.ln2 = nn.LayerNorm(d), nn.LayerNorm(d) |
|
|
self.attn = ByteAttention(d, h) |
|
|
self.ff = nn.Sequential(nn.Linear(d, 4*d), nn.GELU(), nn.Linear(4*d, d)) |
|
|
|
|
|
def forward(self, x, mask): |
|
|
x = x + self.attn(self.ln1(x), mask) |
|
|
return x + self.ff(self.ln2(x)) |
|
|
|
|
|
class BinaryTransformer(nn.Module): |
|
|
def __init__(self, cfg): |
|
|
super().__init__() |
|
|
d, L, h, V = cfg["d"], cfg["layers"], cfg["heads"], cfg["vocab"] |
|
|
self.emb = nn.Embedding(V, d) |
|
|
self.blocks = nn.ModuleList([ByteBlock(d, h) for _ in range(L)]) |
|
|
self.ln = nn.LayerNorm(d) |
|
|
self.head = nn.Linear(d, V, bias=False) |
|
|
self.head.weight = self.emb.weight |
|
|
|
|
|
def forward(self, x): |
|
|
B, N = x.shape |
|
|
mask = torch.triu(torch.ones(N, N, device=x.device), 1) * -1e9 |
|
|
h = self.emb(x) |
|
|
for block in self.blocks: |
|
|
h = block(h, mask) |
|
|
return self.head(self.ln(h)) |
|
|
|
|
|
def count_params(self): |
|
|
return sum(p.numel() for p in self.parameters()) |
|
|
|
|
|
class BinaryTrainer: |
|
|
def __init__(self, model, lr=LR): |
|
|
self.model = model.to(DEVICE) |
|
|
self.opt = torch.optim.AdamW(model.parameters(), lr=lr) |
|
|
self.ctx_size = CONFIG["ctx"] |
|
|
self.buffer = deque(maxlen=self.ctx_size + 1) |
|
|
|
|
|
self.bytes_seen = 0 |
|
|
self.total_loss = 0.0 |
|
|
self.updates = 0 |
|
|
self.start_time = time.time() |
|
|
|
|
|
def ingest_byte(self, byte_val): |
|
|
"""Absorb a single byte (0-255)""" |
|
|
self.buffer.append(byte_val) |
|
|
self.bytes_seen += 1 |
|
|
|
|
|
if len(self.buffer) >= UPDATE_EVERY + 1 and self.bytes_seen % UPDATE_EVERY == 0: |
|
|
self._update() |
|
|
|
|
|
if self.bytes_seen % PRINT_EVERY == 0: |
|
|
self._print_stats() |
|
|
|
|
|
|
|
|
if self.bytes_seen % 500000 == 0 and self.bytes_seen > 0: |
|
|
self._save() |
|
|
|
|
|
def _update(self): |
|
|
tokens = list(self.buffer) |
|
|
x = torch.tensor(tokens[:-1], device=DEVICE, dtype=torch.long).unsqueeze(0) |
|
|
y = torch.tensor(tokens[1:], device=DEVICE, dtype=torch.long).unsqueeze(0) |
|
|
|
|
|
self.model.train() |
|
|
logits = self.model(x) |
|
|
loss = F.cross_entropy( |
|
|
logits[:, -UPDATE_EVERY:].reshape(-1, 256), |
|
|
y[:, -UPDATE_EVERY:].reshape(-1) |
|
|
) |
|
|
|
|
|
self.opt.zero_grad() |
|
|
loss.backward() |
|
|
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0) |
|
|
self.opt.step() |
|
|
|
|
|
self.total_loss += loss.item() |
|
|
self.updates += 1 |
|
|
|
|
|
def _print_stats(self): |
|
|
elapsed = time.time() - self.start_time |
|
|
rate = self.bytes_seen / elapsed if elapsed > 0 else 0 |
|
|
avg_loss = self.total_loss / max(1, self.updates) |
|
|
mb = self.bytes_seen / 1_000_000 |
|
|
|
|
|
|
|
|
bpb = avg_loss / math.log(2) |
|
|
|
|
|
print(f"[{elapsed:.0f}s] {mb:.2f}MB | {rate/1000:.1f} KB/s | " |
|
|
f"loss={avg_loss:.3f} | bpb={bpb:.2f} | updates={self.updates}", flush=True) |
|
|
|
|
|
def _save(self): |
|
|
avg_loss = self.total_loss / max(1, self.updates) |
|
|
mb = self.bytes_seen // 1_000_000 |
|
|
ckpt = { |
|
|
"model": self.model.state_dict(), |
|
|
"bytes": self.bytes_seen, |
|
|
"loss": avg_loss, |
|
|
} |
|
|
torch.save(ckpt, f"byte_ckpt_{mb}mb.pt") |
|
|
print(f"[SAVED] {mb}MB checkpoint", flush=True) |
|
|
|
|
|
def main(): |
|
|
print(f"BINARY TRANSFORMER - Raw bytes learning", flush=True) |
|
|
print(f"Config: {CONFIG}", flush=True) |
|
|
print(f"Device: {DEVICE}", flush=True) |
|
|
|
|
|
model = BinaryTransformer(CONFIG) |
|
|
params = model.count_params() |
|
|
print(f"Parameters: {params:,} ({params/1e6:.1f}M)", flush=True) |
|
|
print(f"Vocab: 256 (one per byte)", flush=True) |
|
|
|
|
|
trainer = BinaryTrainer(model) |
|
|
|
|
|
print(f"Listening for raw bytes on stdin...", flush=True) |
|
|
|
|
|
|
|
|
while True: |
|
|
byte = sys.stdin.buffer.read(1) |
|
|
if not byte: |
|
|
break |
|
|
trainer.ingest_byte(byte[0]) |
|
|
|
|
|
print(f"Stream ended. Total bytes: {trainer.bytes_seen:,}", flush=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|