File size: 41,633 Bytes
21900f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 |
import math
from typing import List, Tuple, Optional, Dict
import os
import torch
from torch import Tensor
import numpy as np
import PIL.Image
import random
from io import BytesIO
import cv2
import numpy as np
from torchvision.transforms import functional as F, InterpolationMode
import torchvision.transforms as T
__all__ = ["AutoAugmentPolicy", "AutoAugment", "RandAugment", "TrivialAugmentWide", "AugMix"]
def get_dimensions(img):
height, width = F.get_image_size(img)
channels = F.get_image_num_channels(img)
return channels, height, width
def cutout(img, pad_size, replace=0):
"""Apply cutout (https://arxiv.org/abs/1708.04552) to image.
### (PyTorch implementation of Google's big_vision cutout) ###
This operation applies a (2*pad_size x 2*pad_size) mask of zeros to
a random location within `img`. The pixel values filled in will be of the
value `replace`. The located where the mask will be applied is randomly
chosen uniformly over the whole image.
Args:
image: A PIL image
pad_size: Specifies how big the zero mask that will be generated is that
is applied to the image. The mask will be of size
(2*pad_size x 2*pad_size).
replace: What pixel value to fill in the image in the area that has
the cutout mask applied to it.
Returns:
A PIL image of type uint8.
"""
convert_back=False
if F._is_pil_image(img):
img = F.pil_to_tensor(img) # convert to tensor for pytorch operations
convert_back=True
assert img.dtype == torch.uint8, "PIL to tensor image is expected to have torch.unit8 as dtype."
channels, height, width = get_dimensions(img)
cutout_center_height = torch.randint(low=0, high=height, size=(1,)).item()
cutout_center_width = torch.randint(low=0, high=width, size=(1,)).item()
lower_pad = max(0, cutout_center_height - pad_size)
upper_pad = max(0, height - cutout_center_height - pad_size)
left_pad = max(0, cutout_center_width - pad_size)
right_pad = max(0, width - cutout_center_width - pad_size)
cutout_shape = (height - (lower_pad + upper_pad),
width - (left_pad + right_pad)) # cutout this shape
padding_dims = (left_pad, right_pad, upper_pad, lower_pad)
cutout_mask = torch.nn.functional.pad(
torch.zeros(cutout_shape, dtype=img.dtype, device=img.device),
padding_dims, value=1
)
cutout_mask = cutout_mask.unsqueeze(dim=0)
cutout_mask = torch.tile(cutout_mask, (channels,1,1))
#replacement = torch.ones_like(img, dtype=torch.float32) * replace[0]
#replacement = replacement.to(torch.uint8)
img = torch.where(
cutout_mask==0, # condition.
torch.ones_like(img, dtype=img.dtype, device=img.device) * replace, # If true
#replacement,
img # If condition is false
)
if convert_back:
return F.to_pil_image(img)
else:
return img
def solarize_add(img, addition=0, threshold=128):
"""
For each pixel in the image less than threshold
we add 'addition' amount to it and then clip the
pixel value to be between 0 and 255. The value
of 'addition' is between -128 and 128.
### Re-implementation of Google's big_vision in PyTorch ###
"""
convert_back=False
if F._is_pil_image(img):
img = F.pil_to_tensor(img) # convert to tensor for pytorch operations
convert_back=True
assert img.dtype == torch.uint8, "PIL to tensor image is expected to have torch.unit8 as dtype."
added_img = img.to(torch.int) + addition
added_img = torch.clamp(added_img, min=0,max=255)
added_img = added_img.to(img.dtype)
img = torch.where(
img < threshold, # condition
added_img, # if true
img # if false
)
if convert_back:
return F.to_pil_image(img)
else:
return img
def chroma_drop(img):
img = img.convert("YCbCr")
Y, Cb, Cr = img.split()
if torch.rand(1).item() > 0.5:
Cr = Cr.point(lambda i: 128)
else:
Cb = Cb.point(lambda i: 128)
img = PIL.Image.merge("YCbCr", (Y, Cb, Cr))
return img.convert("RGB")
def auto_saturation_separate(img):
img = img.convert("YCbCr")
Y, Cb, Cr = img.split()
Cbmin, Cbmax = Cb.getextrema()
Crmin, Crmax = Cr.getextrema()
Cmin = min(Cbmin, Crmin)
Cmax = max(Cbmax, Crmax)
Cb = Cb.point(lambda i: ((i-128) / (Cmax - 128) * 127 + 128 if Cmax > 128 else i) if i>127 \
else ((i - Cmin) / (127 - Cmin) * 127) if Cmin<127 else i) # scale >127 and else separately (they represent different hue)
#Cb = Cb.point(lambda i: (i-Cbmin) / (Cbmax - Cbmin) * 255)
Cr = Cr.point(lambda i: ((i-128) / (Cmax - 128) * 127 + 128 if Cmax > 128 else i) if i>127 \
else ((i - Cmin) / (127 - Cmin) * 127) if Cmin<127 else i)
#Cr = Cr.point(lambda i: (i-Crmin) / (Crmax - Crmin) * 255)
img = PIL.Image.merge("YCbCr", (Y, Cb, Cr))
return img.convert("RGB")
def auto_saturation(img):
img = img.convert("YCbCr")
Y, Cb, Cr = img.split()
Cbmin, Cbmax = Cb.getextrema()
Crmin, Crmax = Cr.getextrema()
Cmin = min(Cbmin, Crmin)
Cmax = max(Cbmax, Crmax)
Cb = Cb.point(lambda i: (i-Cmin) / (Cmax - Cmin) * 255 if (Cmax - Cmin) != 0 else i)
Cr = Cr.point(lambda i: (i-Cmin) / (Cmax - Cmin) * 255 if (Cmax - Cmin) != 0 else i)
img = PIL.Image.merge("YCbCr", (Y, Cb, Cr))
return img.convert("RGB")
def _apply_op(
img: Tensor, op_name: str, magnitude: float, interpolation: InterpolationMode, fill: Optional[List[float]]
):
if op_name == "ShearX":
# magnitude should be arctan(magnitude)
# official autoaug: (1, level, 0, 0, 1, 0)
# https://github.com/tensorflow/models/blob/dd02069717128186b88afa8d857ce57d17957f03/research/autoaugment/augmentation_transforms.py#L290
# compared to
# torchvision: (1, tan(level), 0, 0, 1, 0)
# https://github.com/pytorch/vision/blob/0c2373d0bba3499e95776e7936e207d8a1676e65/torchvision/transforms/functional.py#L976
img = F.affine(
img,
angle=0.0,
translate=[0, 0],
scale=1.0,
shear=[math.degrees(math.atan(magnitude)), 0.0],
interpolation=interpolation,
fill=fill,
center=[0, 0],
)
elif op_name == "ShearY":
# magnitude should be arctan(magnitude)
# See above
img = F.affine(
img,
angle=0.0,
translate=[0, 0],
scale=1.0,
shear=[0.0, math.degrees(math.atan(magnitude))],
interpolation=interpolation,
fill=fill,
center=[0, 0],
)
elif op_name == "TranslateX":
img = F.affine(
img,
angle=0.0,
translate=[int(magnitude), 0],
scale=1.0,
interpolation=interpolation,
shear=[0.0, 0.0],
fill=fill,
)
elif op_name == "TranslateY":
img = F.affine(
img,
angle=0.0,
translate=[0, int(magnitude)],
scale=1.0,
interpolation=interpolation,
shear=[0.0, 0.0],
fill=fill,
)
elif op_name == "Rotate":
img = F.rotate(img, magnitude, interpolation=interpolation, fill=fill)
elif op_name == "Brightness":
img = F.adjust_brightness(img, 1.0 + magnitude)
elif op_name == "Color":
img = F.adjust_saturation(img, 1.0 + magnitude)
elif op_name == "Contrast":
img = F.adjust_contrast(img, 1.0 + magnitude)
elif op_name == "Sharpness":
img = F.adjust_sharpness(img, 1.0 + magnitude)
elif op_name == "Posterize":
img = F.posterize(img, int(magnitude))
elif op_name == "Solarize":
img = F.solarize(img, magnitude)
elif op_name == "AutoContrast":
img = F.autocontrast(img)
elif op_name == "Equalize":
img = F.equalize(img)
elif op_name == "Invert":
img = F.invert(img)
elif op_name == "Identity":
pass
elif op_name == 'Cutout': # added
img = cutout(img, int(magnitude), replace=fill)
elif op_name == "SolarizeAdd": # added
img = solarize_add(img, int(magnitude))
elif op_name == "Grayscale": # added v2
img = F.to_grayscale(img, num_output_channels=3)
elif op_name == "ChromaDrop": #
img = chroma_drop(img)
elif op_name == "AutoSaturation":
#img = auto_saturation(img)
img = auto_saturation(img) # dct-equivalent
elif op_name == "AutoSaturation_old": # for compatibility purposes
img = auto_saturation(img)
elif op_name == "Rotate90": # magnitude is +- 90
img = F.rotate(img, magnitude, interpolation=interpolation, fill=fill)
else:
raise ValueError(f"The provided operator {op_name} is not recognized.")
return img
class RandAugment_bv(torch.nn.Module):
r"""RandAugment data augmentation method based on
`"RandAugment: Practical automated data augmentation with a reduced search space"
<https://arxiv.org/abs/1909.13719>`_.
### Re-implementation of Google's Big Vision randaugment in PyTorch ###
If the image is torch Tensor, it should be of type torch.uint8, and it is expected
to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
If img is PIL Image, it is expected to be in mode "L" or "RGB".
Args:
num_ops (int): Number of augmentation transformations to apply sequentially.
magnitude (int): Magnitude for all the transformations.
num_magnitude_bins (int): The number of different magnitude values.
interpolation (InterpolationMode): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
fill (sequence or number, optional): Pixel fill value for the area outside the transformed
image. If given a number, the value is used for all bands respectively.
"""
def __init__(
self,
num_ops: int = 2,
magnitude: int = 10,
num_magnitude_bins: int = 11,
interpolation: InterpolationMode = InterpolationMode.NEAREST,
fill: Optional[List[float]] = None,
ops_list = ["AutoContrast", "Equalize", "Invert", "Rotate", "Posterize", "Solarize", "SolarizeAdd", "Color", "Contrast", "Brightness",
"Sharpness", "ShearX", "ShearY", "Cutout", "TranslateX", "TranslateY"]
) -> None:
super().__init__()
self.num_ops = num_ops
self.magnitude = magnitude
self.num_magnitude_bins = num_magnitude_bins
self.interpolation = interpolation
self.fill = fill
if ops_list==None:
self.ops_list = ["AutoContrast", "Equalize", "Invert", "Rotate", "Posterize", "Solarize", "SolarizeAdd", "Color", "Contrast", "Brightness",
"Sharpness", "ShearX", "ShearY", "Cutout", "TranslateX", "TranslateY"]
else:
self.ops_list = ops_list
def _augmentation_space(self, num_bins: int, image_size: Tuple[int, int]) -> Dict[str, Tuple[Tensor, bool]]:
return {
# op_name: (magnitudes, signed)
#"Identity": (torch.tensor(0.0), False), not needed
"AutoContrast": (torch.tensor(0.0), False),
"Equalize": (torch.tensor(0.0), False),
"Invert": (torch.tensor(0.0), False), # added
"Rotate": (torch.linspace(0.0, 30.0, num_bins), True),
"Posterize": (8 - (torch.arange(num_bins) / ((num_bins - 1) / 4)).round().int(), False),
"Solarize": (torch.linspace(255.0, 0.0, num_bins), False),
"SolarizeAdd": (torch.linspace(0, 110, num_bins), False), # added
"Color": (torch.linspace(0.0, 0.9, num_bins), True),
"Contrast": (torch.linspace(0.0, 0.9, num_bins), True),
"Brightness": (torch.linspace(0.0, 0.9, num_bins), True),
"Sharpness": (torch.linspace(0.0, 0.9, num_bins), True),
"ShearX": (torch.linspace(0.0, 0.3, num_bins), True),
"ShearY": (torch.linspace(0.0, 0.3, num_bins), True),
"Cutout": (torch.linspace(0, 40, num_bins), False), #added
"TranslateX": (torch.linspace(0.0, 150.0 / 336.0 * image_size[1], num_bins), True),
"TranslateY": (torch.linspace(0.0, 150.0 / 336.0 * image_size[0], num_bins), True),
"Grayscale": (torch.tensor(0.0), False),
"ChromaDrop": (torch.tensor(0.0), False),
"AutoSaturation": (torch.tensor(0.0), False),
"AutoSaturation_old": (torch.tensor(0.0), False),
"Rotate90": (torch.tensor(90.0), True),
}
def forward(self, img: Tensor) -> Tensor:
"""
img (PIL Image or Tensor): Image to be transformed.
Returns:
PIL Image or Tensor: Transformed image.
"""
fill = self.fill
channels, height, width = get_dimensions(img)
#if isinstance(img, Tensor):
# if isinstance(fill, (int, float)):
# fill = [float(fill)] * channels
# elif fill is not None:
# fill = [float(f) for f in fill]
op_meta = self._augmentation_space(self.num_magnitude_bins, (height, width))
for _ in range(self.num_ops):
op_index = int(torch.randint(len(self.ops_list), (1,)).item())
op_name = list(self.ops_list)[op_index]
magnitudes, signed = op_meta[op_name]
magnitude = float(magnitudes[self.magnitude].item()) if magnitudes.ndim > 0 else 0.0
if signed and torch.randint(2, (1,)):
magnitude *= -1.0
img = _apply_op(img, op_name, magnitude, interpolation=self.interpolation, fill=fill)
return img
def __repr__(self) -> str:
s = (
f"{self.__class__.__name__}("
f"num_ops={self.num_ops}"
f", magnitude={self.magnitude}"
f", num_magnitude_bins={self.num_magnitude_bins}"
f", interpolation={self.interpolation}"
f", fill={self.fill}"
f")"
)
return s
class ToTensor_range(torch.nn.Module):
r"""
Converts PIL image to Tensor into a specified range
Args:
val_min = minimum value after convert
val_max = maximum value after convert
dtype = dtype after convert (default=torch.float32)
Returns:
Converted Torch Tensor
"""
def __init__(
self,
val_min: float = -1.,
val_max: float = 1.,
dtype = torch.float32,
) -> Tensor:
super().__init__()
self.val_min = val_min
self.val_max = val_max
self.dtype = dtype
def forward(self, img) -> Tensor:
"""
img (PIL Image): Image to be transformed.
Returns:
Tensor: Converted Image
"""
#assert F._is_pil_image(img), "Input should be a PIL image (ToTensor_range transform)"
if F._is_pil_image(img):
img = F.to_tensor(img) # to_tensor normalizes data to (0,1)
img = img.to(self.dtype) # convert dtype
img = self.val_min + (img * (self.val_max - self.val_min)) # scale to val_min to val_max
return img
def __repr__(self) -> str:
s = (
f"{self.__class__.__name__}("
f"val_min={self.val_min}"
f", val_max={self.val_max}"
f", dtype={self.dtype}"
f")"
)
return s
def apply_PILJPEG(img, quality):
buffer = BytesIO()
img.save(buffer, format="JPEG", quality=quality)
buffer.seek(0) # move pointer to 0 so we can read them
img = PIL.Image.open(buffer).convert("RGB")
return img
def apply_cv2JPEG(img, quality):
# convert PIL image to cv2 image
img_cv2 = np.array(img)
img_cv2 = img_cv2[:,:,::-1]
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
result, encimg = cv2.imencode('.jpg', img_cv2, encode_param)
decimg = cv2.imdecode(encimg, 1)
return PIL.Image.fromarray(decimg[:,:,::-1])
def apply_randomJPEG(img, quality):
if random.random() < 0.5:
img = apply_PILJPEG(img, quality) # randomly apply PIL or CV2
else:
img = apply_cv2JPEG(img, quality)
return img
def resize_with_random_intpl(img, size):
"""
Perform resizing with random interpolation
"""
#intp_list = [InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC, InterpolationMode.LANCZOS, InterpolationMode.HAMMING, InterpolationMode.BOX]
intp_list = [InterpolationMode.BILINEAR, InterpolationMode.BICUBIC]
#interp_idx = random.randint(0, len(intp_list)-1)
interp = random.choice(intp_list)
# random interpolation somehow doesn't work
img = F.resize(img, size, interpolation=interp)
return img
class RandomResizeWithRandomIntpl(torch.nn.Module):
r"""
Reads PIL Image. Resizes with random interpolation. Returns torch tensor.
"""
def __init__(
self,
size_range: int=(112,448),
) -> Tensor:
super().__init__()
self.size_range = size_range
def forward(self, img) -> Tensor:
"""
Args:
img: PIL image to be transformed.
Returns:
Tensor: Converted Image
"""
assert F._is_pil_image(img), "Input should be a PIL image (RandomResizeWithRandomIntpl transform)"
# add resize
img = resize_with_random_intpl(img, random.randint(self.size_range[0], self.size_range[1]))
return img
def __repr__(self) -> str:
s = (
f"{self.__class__.__name__}()"
f" size_range={self.size_range}"
f")"
)
class ResizeWithRandomIntpl(torch.nn.Module):
r"""
Reads PIL Image. Resizes with random interpolation. Returns torch tensor.
"""
def __init__(
self,
size: int,
) -> Tensor:
super().__init__()
self.size = size
def forward(self, img) -> Tensor:
"""
Args:
img: PIL image to be transformed.
Returns:
Tensor: Converted Image
"""
assert F._is_pil_image(img), "Input should be a PIL image (ResizeWithRandomIntpl transform)"
# add resize
img = resize_with_random_intpl(img, self.size)
return img
def __repr__(self) -> str:
s = (
f"{self.__class__.__name__}("
f" size={self.size}"
f")"
)
return s
class RRCWithRandomIntpl(T.RandomResizedCrop):
r"""
Reads PIL Image. Randomly resized crop with random interpolation. Returns torch tensor.
"""
def __init__(
self,
size: int,
scale: Tuple[float, float] = (0.08, 1.0),
ratio: Tuple[float, float] = (3./4., 4./3.),
) -> Tensor:
super().__init__(size=size, scale=scale, ratio=ratio)
self.size = size
self.scale = scale
self.ratio = ratio
self.intp_list=[InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC, InterpolationMode.LANCZOS, InterpolationMode.HAMMING, InterpolationMode.BOX]
def forward(self, img) -> Tensor:
"""
Args:
img: PIL image to be transformed.
Returns:
Tensor: Converted Image
"""
assert F._is_pil_image(img), "Input should be a PIL image (RRCWithRandomIntpl transform)"
# add resize
i, j, h, w = self.get_params(img, self.scale, self.ratio)
#interp_idx = random.randint(0, len(self.intp_list)-1)
interp = random.choice(self.intp_list) # somehow doesn't work. Gives me error: TypeError: resized_crop() got multiple values for argument 'interpolation'
return F.resized_crop(img, i, j, h, w, self.size, interpolation=interp)
def __repr__(self) -> str:
s = (
f"{self.__class__.__name__}("
f" size={self.size}"
f", scale={self.scale}"
f", ratio={self.ratio}"
f")"
)
return s
class JPEGinMemory(torch.nn.Module):
r"""
Reads PIL Image. Compress JPEG in memory. Returns PIL Image.
"""
def __init__(
self,
quality_range = (30, 100),
method: str = "cv,pil",
dtype = torch.float32,
) -> Tensor:
super().__init__()
self.quality_range = quality_range
self.method = method.lower().split(',')
self.dtype = dtype
def forward(self, img) -> Tensor:
"""
Args:
img: PIL image to be transformed.jdt
Returns:
Tensor: Converted Image
"""
assert F._is_pil_image(img), "Input should be a PIL image (ResizeAndJPEGinMemory transform)"
if "cv" in self.method and "pil" in self.method:
img = apply_randomJPEG(img, random.randint(self.quality_range[0], self.quality_range[1]))
elif "cv" in self.method:
img = apply_cv2JPEG(img, random.randint(self.quality_range[0], self.quality_range[1]))
elif "pil" in self.method:
img = apply_PILJPEG(img, random.randint(self.quality_range[0], self.quality_range[1]))
return img
def __repr__(self) -> str:
s = (
f"{self.__class__.__name__}("
f", quality_range={self.quality_range}"
f", dtype={self.dtype}"
f")"
)
return s
class ResizeAndJPEGinMemory(torch.nn.Module):
r"""
Reads PIL Image. Resizes and compresses to JPEG in memory. Returns torch tensor.
"""
def __init__(
self,
size: int,
quality: int = 95,
method: str = "cv,pil",
dtype = torch.float32,
) -> Tensor:
super().__init__()
self.size = size
self.quality = quality
self.method = method.lower().split(',')
self.dtype = dtype
def forward(self, img) -> Tensor:
"""
Args:
img: PIL image to be transformed.
Returns:
Tensor: Converted Image
"""
assert F._is_pil_image(img), "Input should be a PIL image (ResizeAndJPEGinMemory transform)"
# add resize
img = F.resize(img, self.size, interpolation=InterpolationMode.BILINEAR) # this is the right way to resize! If torchvision updates, make sure that this resizes the smaller side to the specified size and keeps the aspect ratio
if "cv" in self.method and "pil" in self.method:
img = apply_randomJPEG(img, self.quality)
elif "cv" in self.method:
img = apply_cv2JPEG(img, self.quality)
elif "pil" in self.method:
img = apply_PILJPEG(img, self.quality)
return img
def __repr__(self) -> str:
s = (
f"{self.__class__.__name__}("
f" size={self.size}"
f", quality={self.quality}"
f", dtype={self.dtype}"
f")"
)
return s
class StochasticJPEG(torch.nn.Module):
r"""
Stochastically applies multiple JPEG compression and resizing to an image.
"""
def __init__(
self,
size: int, # final output size
quality: Tuple[int, int] = (50, 100), # quality range
num_jpeg: Tuple[int, int] = (1, 5), # number of jpegs to apply
jpeg_p: float = 0.5, # probability of applying JPEG compression
rrc_p: float = 0.5, # probability of applying random resized crop
rrc_scale: Tuple[float, float] = (0.75, 1.0), # random resize crop scale
rrc_ratio: Tuple[float, float] = (3./4., 4./3.), # random resize crop ratio
no_rrc: bool = False, # if True, no random resized crop is applied
dtype: type = torch.float32,
) -> Tensor:
"""
Initialize the CustomTransforms class.
Args:
size (int): The final output size.
quality (Tuple[int, int]): The quality range as a tuple of two integers.
num_jpeg (Tuple[int, int]): The number of jpegs to apply as a tuple of two integers.
p (float): The probability of applying the transform.
rrc_scale (Tuple[float, float]): The random resize crop scale as a tuple of two floats.
rrc_ratio (Tuple[float, float]): The random resize crop ratio as a tuple of two floats.
no_rrc (bool): If True, no random resized crop is applied.
dtype (type): The data type of the tensor.
Returns:
Tensor: The initialized CustomTransforms object.
"""
super().__init__()
self.size = size
self.quality = quality
self.num_jpeg = num_jpeg
self.jpeg_p = jpeg_p
self.rrc_p = rrc_p
self.rrc = torch.nn.Identity() if no_rrc else T.RandomResizedCrop(size=size, scale=rrc_scale, ratio=rrc_ratio, interpolation=InterpolationMode.BILINEAR)
self.dtype = dtype
def forward(self, img) -> Tensor:
"""
Args:
img: PIL image to be transformed.
Returns:
Tensor: Converted Image
"""
assert F._is_pil_image(img), "Input should be a PIL image (StochasticJPEG transform)"
# randomly sample p
count = self.num_jpeg[0]
for _ in range(self.num_jpeg[0]): # apply min number of jpegs and RRC first
img = self.rrc(img)
img = apply_randomJPEG(img, random.randint(self.quality[0], self.quality[1]))
while count < self.num_jpeg[1]:
if random.random() < self.p: # apply more jpegs with set probability.
img = self.rrc(img)
img = apply_randomJPEG(img, random.randint(self.quality[0], self.quality[1]))
count += 1
else:
break
return img
class RandomJPEG(torch.nn.Module):
"""
Randomly applies JPEG
Args:
quality: tuple of quality value range for JPEG
p: probability of applying JPEG
"""
def __init__(
self,
quality_list: tuple = (30, 100),
p: float = 0.5,
):
super().__init__()
self.quality_list = quality_list
self.p = p
def forward(self, img):
if random.random() < self.p:
img = apply_randomJPEG(img, random.randint(self.quality_list[0], self.quality_list[1]))
return img
class RandomGaussianBlur(torch.nn.Module):
"""
Randomly applies Gaussian Blur
Args:
p: probability of applying JPEG
sigma: tuple of sigma values for Gaussian Blur
"""
def __init__(
self,
p: float = 0.5,
sigma: Tuple[float, float] = (0.0, 3.0),
):
super().__init__()
self.p = p
self.sigma = sigma
def forward(self, img):
if random.random() < self.p:
sigma=random.uniform(self.sigma[0], self.sigma[1])
kernel_size=1+2*round(sigma*4.0) # default sigma used in scipy (https://github.com/scipy/scipy/blob/v1.13.1/scipy/ndimage/_filters.py#L286-L390)
img = F.gaussian_blur(img, kernel_size=kernel_size, sigma=sigma)
return img
class RandomPaddingAndResize(torch.nn.Module):
r"""
Reads PIL Image. Randomly applies padding, and resize it back to original resolution.
"""
def __init__(
self,
pad_percentage_range = (0.1, 0.1), # random padding percentage for x (width) and y (height)
padding_value_range = (0, 255), # random padding value range
) -> Tensor:
super().__init__()
self.pad_percentage_range = pad_percentage_range
self.padding_value_range = padding_value_range
def forward(self, img) -> Tensor:
"""
Args:
img: PIL image to be transformed.jdt
Returns:
Tensor: Converted Image
"""
assert F._is_pil_image(img), "Input should be a PIL image (ResizeAndJPEGinMemory transform)"
original_size = img.size
pad_x_l = random.uniform(0, self.pad_percentage_range[0]/2) # x-axis random padding ratio (left)
pad_x_r = random.uniform(0, self.pad_percentage_range[0]/2) # x-axis random padding ratio (right)
pad_y_l = random.uniform(0, self.pad_percentage_range[1]/2) # y-axis random padding ratio (left)
pad_y_r = random.uniform(0, self.pad_percentage_range[1]/2) # y-axis random padding ratio (right)
pad_fill = random.randint(int(self.padding_value_range[0]), int(self.padding_value_range[1])) # random padding fill value
img = F.pad(img, (int(pad_x_l*img.size[0]), int(pad_y_l*img.size[1]), int(pad_x_r*img.size[0]), int(pad_y_r*img.size[1])), fill=pad_fill, padding_mode='constant')
img = F.resize(img, original_size, interpolation=InterpolationMode.BILINEAR)
return img
def __repr__(self) -> str:
s = (
f"{self.__class__.__name__}("
f", pad_percentage_range={self.pad_percentage_range}"
f", padding_value_range={self.padding_value_range}"
f")"
)
return s
class RandomCutout(T.RandomErasing):
r"""
Random cutout with random numbers
"""
def __init__(
self,
p=0.5,
scale=(0.02, 0.33),
ratio=(0.3, 3.3),
value_range=(0, 255),
):
super().__init__(p=p, scale=scale, ratio=ratio)
self.value_range = value_range
def forward(self, img):
convert_to_pil=False
if F._is_pil_image(img):
img = F.pil_to_tensor(img)
convert_to_pil=True
if torch.rand(1) < self.p:
rand_value = random.randint(self.value_range[0], self.value_range[1])
# cast self.value to script acceptable type
if isinstance(rand_value, (int, float)):
rand_value = [float(rand_value)]
elif isinstance(rand_value, str):
rand_value = None
elif isinstance(rand_value, (list, tuple)):
rand_value = [float(v) for v in rand_value]
else:
rand_value = rand_value
if rand_value is not None and not (len(rand_value) in (1, img.shape[-3])):
raise ValueError(
"If value is a sequence, it should have either a single value or "
f"{img.shape[-3]} (number of input channels)"
)
x, y, h, w, v = self.get_params(img, self.scale, self.ratio, rand_value)
img = F.erase(img, x, y, h, w, v)
if convert_to_pil:
img = F.to_pil_image(img)
return img
class RandomVisualization(torch.nn.Module):
r"""
Randomly visualizes the fully augmented images by saving them at a specified directory.
"""
def __init__(
self,
save_dir: str = "/nfs/turbo/coe-ahowens-nobackup/jespark/visualizations/fake_img",
save_p: float = 0.01,
max_imgs: int = 500,
overwrite: bool = False,
) -> None:
super().__init__()
self.save_dir = save_dir
self.save_p = save_p
self.max_imgs = max_imgs
self.overwrite = overwrite
self.skip_namecheck=False
def next_available_filename(self, save_dir, max_imgs):
# Returns next available filename
# image format = visualization_{03d}_{i}.png, i=[0, max_imgs)
# let's not make it overwrite
imgs = os.listdir(save_dir)
imgs_list = [int(img.split("_")[-1].split(".")[0]) for img in imgs]
random_int = random.randint(0, 999)
if len(imgs_list) >= max_imgs:
if self.overwrite:
return random.choice(imgs) # overwrite random file from imgs
else:
self.skip_namecheck=True
return False
elif len(imgs_list) > 0:
next_int = max(imgs_list) + 1
return f"visualization_{next_int}_{random_int:03d}.png"
elif len(imgs_list) == 0:
return f"visualization_0_{random_int:03d}.png"
else: # uncaught, unexpected situation.
raise ValueError("Error in next_available_filename")
def forward(self, img) -> Tensor:
"""
Args:
img: PIL image to be transformed.
Returns:
Tensor: Converted Image
"""
if not self.skip_namecheck:
if random.random() < self.save_p:
os.makedirs(self.save_dir, exist_ok=True)
filename = self.next_available_filename(self.save_dir, self.max_imgs)
if filename:
img.save(os.path.join(self.save_dir, filename))
return img
class RandomStateAugmentation(torch.nn.Module):
r"""
Randomly applies augmentations given in the input
"""
def __init__(
self,
resize_size=256,
crop_size=224,
auglist="JPEGinMemory,RandomResizeWithRandomIntpl,RandomCrop,RandomHorizontalFlip,RandomVerticalFlip,RRCWithRandomIntpl,RandomRotation,RandomTranslate,RandomShear,RandomPadding",
min_augs='0',
max_augs='5',
):
"""
auglist: augmentation lists to apply. Input comma-separated string of augmentations.
min_augs: minimum number of augmentations to apply. (can be comma-separated string to denote per-augmentation minimum)
max_augs: maximum number of augmentations to apply. (can be comma-separated string to denote per-augmentation maximum)
"""
super().__init__()
self.resize_size=resize_size
self.crop_size=crop_size
self.auglist = self.parse_auglist(auglist)
# convert min_augs and max_augs to appropriate format
min_augs = self.parse_augnums(min_augs)
max_augs = self.parse_augnums(max_augs)
if type(min_augs) == list:
assert type(max_augs) == list, "max_augs should be list if min_augs is list."
assert len(min_augs) == len(auglist), "min_augs length should be equal to auglist length."
assert len(max_augs) == len(auglist), "max_augs length should be equal to auglist length."
# convert min_augs and max_augs to list if they are not
self.min_augs = [min_augs] * len(self.auglist) if type(min_augs) != list else min_augs
self.max_augs = [max_augs] * len(self.auglist) if type(max_augs) != list else max_augs
def parse_augnums(self, augsnum):
# parse min_augs or max_augs. They are expected to be a string of integers, optinally separated by commas.
augsnum_list = augsnum.split(",")
if len(augsnum_list) == 1:
return int(augsnum_list[0])
else:
return [int(aug) for aug in augsnum_list]
def parse_auglist(self, auglist):
# parse str-comma-separated auglist to list of augmentations
# default augmentation thoughts: "JPEGinMemory,RandomResizeWithRandomIntpl,RandomCrop,RandomHorizontalFlip,RandomVerticalFlip,RRCWithRandomIntpl,RandomRotation,RandomTranslate,RandomShear,RandomPadding"
auglist_list = auglist.split(",")
parsed_list = torch.nn.ModuleList()
for aug_name in auglist_list:
if aug_name=='singleJPEG':
parsed_list.append(ResizeAndJPEGinMemory(size=self.crop_size, quality=95, dtype=torch.float32))
if aug_name=='StochasticJPEG':
parsed_list.append(StochasticJPEG(size=self.crop_size, quality=(75, 100), num_jpeg=(1, 5), jpeg_p=0.5, rrc_p=0.5, rrc_scale=(0.75, 1.0), rrc_ratio=(3./4., 4./3.), no_rrc=False, dtype=torch.float32))
if aug_name=='JPEGinMemory':
parsed_list.append(JPEGinMemory(quality_range=(75, 100), dtype=torch.float32))
if aug_name=='RandomResizeWithRandomIntpl':
parsed_list.append(RandomResizeWithRandomIntpl(size_range=(self.crop_size+1,round(self.crop_size*1.228)))) # should not be smaller; causes issues with Random Crop.
if aug_name=='RandomCrop':
parsed_list.append(T.RandomCrop(self.crop_size))
if aug_name=='RandomHorizontalFlip':
parsed_list.append(T.RandomHorizontalFlip())
if aug_name=='RandomVerticalFlip':
parsed_list.append(T.RandomVerticalFlip())
if aug_name=='RRCWithRandomIntpl':
parsed_list.append(RRCWithRandomIntpl(size=self.crop_size, scale=(0.9, 1.0), ratio=(3./4., 4./3.)))
if aug_name=='RandomRotation':
parsed_list.append(T.RandomRotation(15, interpolation=InterpolationMode.BILINEAR))
if aug_name=='RandomTranslate':
parsed_list.append(T.RandomAffine(degrees=0, translate=(0.1, 0.1), scale=None, shear=None, interpolation=InterpolationMode.BILINEAR))
if aug_name=='RandomShear':
parsed_list.append(T.RandomAffine(degrees=0, translate=None, scale=None, shear=(-15, 15, -15, 15), interpolation=InterpolationMode.BILINEAR))
if aug_name=='RandomPadding' or aug_name=='RandomPaddingAndResize':
parsed_list.append(RandomPaddingAndResize(pad_percentage_range=(0.1, 0.1), padding_value_range=(0, 255)))
if aug_name=='RandomCutout':
parsed_list.append(RandomCutout(p=0.5, scale=(0.02, 0.06), ratio=(0.3, 3.3), value_range=(0, 255)))
return parsed_list
def generate_randAug_counts(self):
# Generates random required counts per augmentation
per_aug_counts = [0] * len(self.auglist)
for i in range(len(per_aug_counts)):
per_aug_counts[i] = random.randint(self.min_augs[i], self.max_augs[i])
return per_aug_counts
def convert_aug_counts_to_idxList(self, per_aug_counts):
# convert per augmentation count to list of indices. For example, [1,3,2] = [0,1,1,1,2,2]
idxList = []
for i in range(len(per_aug_counts)):
idxList += [i] * per_aug_counts[i]
return idxList
def check_if_complete(self, count, min_augs):
# not needed
if type(min_augs) == list:
min_augs_list = min_augs
else:
min_augs_list = [min_augs] * len(self.auglist)
for i in range(len(min_augs_list)):
if count[i] < min_augs_list[i]:
return False
return True
def forward(self, img) -> Tensor:
"""
Args:
img: PIL image to be transformed.
Returns:
Tensor: Converted Image
"""
assert F._is_pil_image(img), "Input should be a PIL image (RandomStateAugmentation transform)"
# randomly applies augmentation. Randomly walks through the list of augmentations and applies them. They should be applied at least "min_augs" number of times.
#count = [0] * len(self.auglist)
idxList = self.convert_aug_counts_to_idxList(self.generate_randAug_counts())
while len(idxList) > 0:
randomIdx = idxList.pop(random.randint(0, len(idxList)-1)) # randomly pop index from idxList
img = self.auglist[randomIdx](img)
#count[randomIdx] += 1 # not needed, idxList contains exact amount of augmentations to apply per idx.
return img
class RandomSignRotation(torch.nn.Module):
r"""
Randomly rotates the image by given angle. Randomly changes sign.
"""
def __init__(
self,
angle: int,
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
) -> Tensor:
super().__init__()
self.angle = angle
self.interpolation = interpolation
def forward(self, img) -> Tensor:
"""
Args:
img: PIL image to be transformed.
Returns:
Tensor: Converted Image
"""
if random.random() < 0.5:
angle = -self.angle
else:
angle = self.angle
img = F.rotate(img, angle, interpolation=self.interpolation)
return img
def __repr__(self) -> str:
s = (
f"{self.__class__.__name__}("
f" angle={self.angle}"
f", interpolation={self.interpolation}"
f")"
)
return s
class RandomResize(torch.nn.Module):
r"""
Randomly resizes the input. Either up or downsample and then return it to the original size. Arguments take percentage of resizing (e.g., 0.3 means it can be downsized or upsampled by 30%)
"""
def __init__(
self,
resize_percentage: float,
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
) -> Tensor:
super().__init__()
self.resize_percentage = resize_percentage
self.interpolation = interpolation
def forward(self, img) -> Tensor:
"""
Args:
img: PIL image to be transformed.
Returns:
Tensor: Converted Image
"""
if random.random() < 0.5:
resize_percentage = 1.0 - self.resize_percentage
else:
resize_percentage = 1.0 + self.resize_percentage
original_size_1, original_size_0 = img.size # width, height
img = F.resize(img, (int(original_size_0*resize_percentage), int(original_size_1*resize_percentage)), interpolation=self.interpolation) # resized height, width
img = F.resize(img, (original_size_0, original_size_1), interpolation=self.interpolation)
return img
|