Transformers
File size: 22,970 Bytes
37fcdfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
### Dataloader for fake/real image classification

import torch
import pandas as pd
import numpy as np
import os
import PIL.Image
import random
import custom_transforms as ctrans
import math
import utils as ut

from torchvision import transforms
#from torchvision.transforms import v2 as transforms
from torch.utils.data.distributed import DistributedSampler
from custom_sampler import DistributedEvalSampler
from functools import partial
import datasets as ds
import io
import logging

class dataset_huggingface(torch.utils.data.Dataset):
    """
    Dataset for Community Forensics
    """
    def __init__(
            self,
            args,
            repo_id='OwensLab/CommunityForensics',
            split='Systematic+Manual',
            mode='train',
            cache_dir='',
            dtype=torch.float32,
    ):
        """
        args: Namespace of argument parser
        split: split of the dataset to use
        mode: 'train' or 'eval'
        cache_dir: directory to cache the dataset
        dtype: data type
        """
        super(dataset_huggingface).__init__()
        self.args = args
        self.repo_id = repo_id
        self.split = split
        self.mode = mode
        self.cache_dir = cache_dir
        self.dtype = dtype
        self.dataset = self.get_hf_dataset()
    
    def __getitem__(self, index):
        """
        Returns the image and label for the given index.
        """
        data = self.dataset[index]
        image_bytes = data['image_data']
        label = int(data['label'])
        generator_name = data['model_name']

        img = PIL.Image.open(io.BytesIO(image_bytes)).convert("RGB")

        return img, label, generator_name

    def get_hf_dataset(self):
        """
        Returns the huggingface dataset object
        """
        hf_repo_id = self.repo_id
        if self.mode == 'train':
            shuffle=True
            shuffle_batch_size=3000
        elif self.mode == 'eval':
            shuffle=False

        #### TEST TOKEN PART ####
        #### TEST TOKEN PART ####
        #### TEST TOKEN PART ####
        token_df = pd.read_csv("/nfs/turbo/coe-ahowens/jespark/tokens.csv")
        HF_TOKEN = token_df.loc[token_df['label'] == 'huggingface_write_token', 'token'].values[0]
        #### TEST TOKEN PART ####
        #### TEST TOKEN PART ####
        #### TEST TOKEN PART ####

        hf_dataset = ds.load_dataset(hf_repo_id, split=self.split, cache_dir=self.cache_dir, token=HF_TOKEN)
        if shuffle:
            hf_dataset = hf_dataset.shuffle(seed=self.args.seed, writer_batch_size=shuffle_batch_size)

        return hf_dataset

    def __len__(self):
        """
        Returns the length of the dataset.
        """
        return len(self.dataset)
        
class dataset_folder_based(torch.utils.data.Dataset):
    """
    Dataset for sourcing images from a directory; designed to be used with the huggingface datasets library.
    """
    def __init__(
            self,
            args,
            dir,
            labels="real:0,fake:1",
            logger: logging.Logger = None,
            dtype=torch.float32,
    ):
        """
        args: Namespace of argument parser
        dir: directory to index
        labels: labels for the dataset. Default: "real:0,fake:1" -- assigns integer label 0 to images under "real" and 1 to images under "fake".
        dtype: data type

        The directory must be formatted as follows:
        - <generator_or_dataset_name>
            ∟ <label -- "real" or "fake">
                ∟ <image_name>.{jpg,png,...}
        `dir` should point to the parent directory of the `generator_or_dataset_name` folders.
        """
        super(dataset_folder_based).__init__()
        self.args = args
        self.dir = dir
        self.labels = self.parse_labels(labels)
        assert len(self.labels) == 2, f"Labels must be in the format 'label1:int,label2:int'. It only supports two labels. Instead, it is: {labels}."

        self.logger = logger
        if self.logger is None:
            self.logger = ut.logger
        self.dtype = dtype
        self.df = self.get_index(dir)

    def __getitem__(self, index):
        """
        Returns the image and label for the given index.
        """
        img_path = self.df.iloc[index]['ImagePath']
        label = int(self.df.iloc[index]['Label'])
        generator_name = self.df.iloc[index]['GeneratorName']

        img = PIL.Image.open(img_path).convert("RGB")

        return img, label, generator_name

    def __len__(self):
        """
        Returns the length of the dataset.
        """
        return len(self.df)
    
    def parse_labels(self, labels):
        """
        Parses the labels string and returns a dictionary of labels.
        """
        labels_dict = {}
        for label in labels.split(','):
            label_name, label_value = label.split(':')
            labels_dict[label_name] = int(label_value)

        return labels_dict

    def get_label_int(self, label):
        """
        Returns the integer label for the given label name.
        """
        if label in self.labels:
            return self.labels[label]
        else:
            raise ValueError(f"Label {label} not found in labels: {self.labels}. Please check the labels.")

    def get_index(self, dir):
        """
        Check the `dir` for the index file. If it exists, load it. If not, index the directory and save the index file.
        """
        index_path = os.path.join(dir, 'index.csv')
        if os.path.exists(index_path):
            df = pd.read_csv(index_path)
            if self.args.rank == 0:
                self.logger.info(f"Loaded index file from {index_path}")
        else:
            if self.args.rank == 0:
                self.logger.info(f"Index file not found. Indexing the directory {dir}. This may take a while...")
            df = self.index_directory(dir)
        return df

    def index_directory(self, dir, report_every=1000):
        """
        Indexes the given directory and returns a dataframe with the image paths, labels, and generator names.
        The directory must be formatted as follows:
        - <generator_or_dataset_name>
            ∟ <label -- "real" or "fake">
                ∟ <image_name>.{jpg,png,...}
        `dir` should point to the parent directory of the `generator_or_dataset_name` folders.
        """  
        df = pd.DataFrame(columns=['ImagePath', 'Label', 'GeneratorName'])
        temp_dfs=[]
        for root, dirs, files in os.walk(dir):
            for file in files:
                if file.endswith(('.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp', '.gif')):
                    # get the generator name and label from the directory structure
                    generator_name=os.path.basename(os.path.dirname(root))
                    label=os.path.basename(root) # should be "real" or "fake"
                    label_int=self.get_label_int(label)
                    # get the image path
                    image_path=os.path.join(root, file)
                    # append the image path, label, and generator name to the list
                    temp_dfs.append(pd.DataFrame([[image_path, label_int, generator_name]], columns=['ImagePath', 'Label', 'GeneratorName']))
                    if len(temp_dfs) % report_every == 0 and self.args.rank == 0:
                        print(f"\rIndexed {len(temp_dfs)} images...          ", end='', flush=True)
        df = pd.concat(temp_dfs, ignore_index=True)
        print("") # print a new line after the progress bar
        # sort the dataframe by generator name, label, and image name
        df = df.sort_values(by=['GeneratorName', 'Label', 'ImagePath'])
        df = df.reset_index(drop=True)
        # save the dataframe
        df.to_csv(os.path.join(dir, 'index.csv'), index=False)

        self.logger.info(f"Indexed the directory {dir} and saved the index file to {os.path.join(dir, 'index.csv')}")
        return df
    
    def limit_real_data(self, df, num_max_images):
        """
        Limits the real data to contain `num_max_images` total images by preserving the smallest datasets first.
        """
        new_df=pd.DataFrame()
        # get the number of images per dataset name
        real_df = df[df['Label'] == 0]
        fake_df = df[df['Label'] == 1]

        if len(real_df) <= num_max_images:
            self.logger.info(f"The size of real data: {len(real_df)} is less than or equal to the target size: {num_max_images}. No need to limit the real data. Note that the original model is trained with near 50/50 real/fake to avoid bias -- too much deviation from this may lead to unwanted detection bias.")
            return df

        dataset_counts = real_df['GeneratorName'].value_counts()
        # sort the dataset counts in descending order
        dataset_counts = dataset_counts.sort_values(ascending=True)
        smallest_sum=0
        smallest_idx=0
        num_not_appended_datasets=len(dataset_counts)

        while True:
            perModelLen = dataset_counts.iloc[smallest_idx]
            if (perModelLen * num_not_appended_datasets + smallest_sum) >= num_max_images: # reached data target
                perModelLen = math.ceil((num_max_images - smallest_sum) / num_not_appended_datasets) # number of images to sample from datasets not yet fully appended
                break
            elif smallest_idx == len(dataset_counts)-1:
                break # ran out of datasets; this is when size of all real data is less than num_max_images
            else: # continuously grow perModelLen with the next smallest dataset
                smallest_sum += dataset_counts.iloc[smallest_idx] # fully append the smallest dataset
                smallest_idx+=1
                num_not_appended_datasets-=1

        # sample the datasets
        for dataset_name in dataset_counts.index[smallest_idx:]:
            dataset_df = real_df[real_df['GeneratorName'] == dataset_name]
            if len(dataset_df) > perModelLen:
                dataset_df = dataset_df.sample(n=perModelLen, random_state=self.args.seed)
            new_df = pd.concat([new_df, dataset_df], ignore_index=True)
        
        # append the remaining datasets
        for dataset_name in dataset_counts.index[:smallest_idx]:
            dataset_df = real_df[real_df['GeneratorName'] == dataset_name]
            new_df = pd.concat([new_df, dataset_df], ignore_index=True)

        # report the proportions per dataset
        if self.args.rank == 0:
            pd.options.display.float_format = '{:.2f} %'.format
            self.logger.info(f"Max images per dataset limited to {perModelLen}. Affected datasets: {dataset_counts.index[smallest_idx:]}")
            # Update the dataset counts for reporting proportions
            dataset_counts = new_df['GeneratorName'].value_counts()
            dataset_counts = dataset_counts / dataset_counts.sum() * 100 # composition percentage
            self.logger.info(f"Dataset composition: \n{dataset_counts}")
        
        # append the fake data
        new_df = pd.concat([new_df, fake_df], ignore_index=True)

        return new_df

def determine_resize_crop_sizes(args):
    """
    Determine resize and crop sizes based on input size.
    """
    if args.input_size==224:
        resize_size=256
        crop_size=224
    elif args.input_size==384:
        resize_size=440
        crop_size=384
    return resize_size, crop_size

def get_transform(args, mode="train", dtype=torch.float32):
    norm_mean = [0.485, 0.456, 0.406] #imagenet norm
    norm_std = [0.229, 0.224, 0.225]
    resize_size, crop_size = determine_resize_crop_sizes(args)
    augment_list = []

    if mode=="train":
        augment_list.append(transforms.Resize(resize_size))

        # RandomStateAugmentation
        if args.rsa_ops != '':
            # parse rsa_ops and their num_ops
            # Default "rsa_ops" is "JPEGinMemory,RandomResizeWithRandomIntpl,RandomCrop,RandomHorizontalFlip,RandomVerticalFlip,RRCWithRandomIntpl,RandomRotation,RandomTranslate,RandomShear,RandomPadding,RandomCutout"
            augment_list.append(ctrans.RandomStateAugmentation(resize_size=resize_size, crop_size=crop_size, auglist=args.rsa_ops, min_augs=args.rsa_min_num_ops, max_augs=args.rsa_max_num_ops))

        augment_list.append(transforms.RandomCrop(crop_size))

        # basic augmentations
        augment_list.extend([
            ctrans.ToTensor_range(val_min=0, val_max=1),
            transforms.Normalize(mean=norm_mean, std=norm_std),
            transforms.ConvertImageDtype(dtype)
        ])
    elif mode=="val" or mode=="test":
        augment_list.append(transforms.Resize(resize_size))
        augment_list.extend([
            transforms.CenterCrop(crop_size),
            ctrans.ToTensor_range(val_min=0, val_max=1),
            transforms.Normalize(mean=norm_mean, std=norm_std),
            transforms.ConvertImageDtype(dtype),
        ])
    transform = transforms.Compose(augment_list)
    return transform
        
class SubsetWithTransform(torch.utils.data.Dataset):
    """
    Custom subset class which allows to customize transform for each subsets got from random_split()
    """
    def __init__(self, subset, transform=None):
        self.subset = subset
        self.subset_len = len(subset)
        self.transform = transform
        
    def __getitem__(self, index):
        img, lab, generator_name = self.subset[index]
        if self.transform:
            img = self.transform(img)
        return img, lab, generator_name

    def __len__(self):
        return self.subset_len

def set_seeds_for_data(seed=11997733):
    """
    Set seeds for Python, numpy, and pytorch. Used to split the dataset consistantly across DDP instances.
    """
    torch.manual_seed(seed)
    random.seed(seed)
    np.random.seed(seed)

def set_seeds_for_worker(seed=11997733, id=0):
    """
    Set seeds for python, and numpy. Default seed=11997733.
    PyTorch seeding is handled by torch.Generator passed into the DataLoader
    """
    seed = seed % (2**31)
    random.seed(seed+id)
    np.random.seed(seed+id)

def worker_seed_reporter(id=None):
    """
    Debug: reports worker seeds
    """
    workerseed = torch.utils.data.get_worker_info().seed
    numwkr = torch.utils.data.get_worker_info().num_workers
    baseseed = torch.initial_seed()
    print(f"Worker id: {id+1}/{numwkr}, worker seed: {workerseed}, baseseed: {baseseed}, workerseed % (2**31): {workerseed % (2**31)}")

def set_seeds_and_report(report=True, id=0):
    """
    Debug: set seeds and report
    """
    workerseed = torch.utils.data.get_worker_info().seed
    set_seeds_for_worker(workerseed, id)
    if report:
        worker_seed_reporter(id)

def get_seedftn_and_generator(args, seed=None):
    """
    Get the seed function and generator for the dataloader.
    Args:
        args: Namespace of argument parser
        seed: seed for random number generation
    """
    rank = args.rank
    if seed is not None:
        seedftn = partial(set_seeds_and_report, False)
        seed_generator = torch.Generator(device='cpu')
        seed_generator.manual_seed(seed+rank)
    else:
        seedftn = None
        seed_generator = None
        seed = random.randint(0, 1000000000)
    
    return seedftn, seed_generator, seed

def get_train_dataloaders(
    args,
    huggingface_repo_id='',
    huggingface_split='Systematic+Manual',
    additional_data_path='',
    additional_data_label_format='real:0,fake:1',
    batch_size=128,
    num_workers=4,
    val_frac=0.01,
    logger: logging.Logger = None,
    seed=None,
):
    """
    Get train and validation dataloaders for the dataset.
    Args:
        args: Namespace of argument parser
        huggingface_repo_id: huggingface repo id for the dataset
        huggingface_split: split of the dataset to use
        additional_data_path: path to the folder containing the dataset
        batch_size: size of batch
        num_workers: number of subprocesses to spawn
        val_frac: fraction of data to use for validation (default: 0.01)
        seed: seed for random number generation
    """
    rank = args.rank
    world_size = args.world_size

    seedftn, seed_generator, seed = get_seedftn_and_generator(args, seed)
    if logger is None:
        logger = ut.logger
    
    hf_dataset=None
    if huggingface_repo_id != '':
        hf_dataset=dataset_huggingface(args, huggingface_repo_id, split=huggingface_split, mode='train', cache_dir=args.cache_dir, dtype=torch.float32)
    
    folder_dataset=None
    if additional_data_path != '':
        folder_dataset=dataset_folder_based(args, additional_data_path, additional_data_label_format, logger=logger, dtype=torch.float32)
        num_fake_images = len(folder_dataset.df[folder_dataset.df['Label'] == 1])
        if hf_dataset is not None and not args.dont_limit_real_data_to_fake: # limit real data to the length of fake data
            num_hf_fake_images = len(hf_dataset.dataset.filter(lambda x: x['label'] == 1, num_proc=num_workers))
            num_hf_real_images = len(hf_dataset.dataset) - num_hf_fake_images
            num_fake_images = num_fake_images + num_hf_fake_images
            #num_real_images = num_hf_real_images + len(folder_dataset.df[folder_dataset.df['Label'] == 0])

            folder_based_real_limit = num_fake_images - num_hf_real_images
            if folder_based_real_limit < 0:
                folder_based_real_limit = 0
            else:
                if rank == 0:
                    logger.info(f"Limiting folder-based real data to {folder_based_real_limit} images to match the number of fake images.")
                folder_dataset.df = folder_dataset.limit_real_data(folder_dataset.df, folder_based_real_limit)

    # merge two datasets
    if hf_dataset is not None and folder_dataset is not None:
        dataset_object = torch.utils.data.ConcatDataset([hf_dataset, folder_dataset])
    elif hf_dataset is not None:
        dataset_object = hf_dataset
    elif folder_dataset is not None:
        dataset_object = folder_dataset
    else:
        raise ValueError("No dataset provided. Please provide a huggingface repo id or a folder path.")
    
    set_seeds_for_data(seed) # Set same seeds for dataset split

    # Split the dataset into train and validation sets
    train_frac = 1 - val_frac
    if val_frac > 0:
        traindata_split, valdata_split = torch.utils.data.random_split(dataset_object, (train_frac, val_frac))
    else:
        traindata_split = dataset_object
        valdata_split = []
    
    set_seeds_for_data(seed+rank) # after dataset is split, use different seeds for augmentations and shuffling.
    
    # Get dataloaders
    traindata_split = SubsetWithTransform(traindata_split, transform=get_transform(args, mode='train', dtype=torch.float32))
    train_sampler = DistributedSampler(
        traindata_split, num_replicas=world_size, rank=rank, shuffle=True, drop_last=False,
    )
    trainloader = torch.utils.data.DataLoader(
        traindata_split, batch_size=batch_size, pin_memory=True,
        shuffle=False, num_workers=num_workers, sampler=train_sampler,
        worker_init_fn=seedftn, generator=seed_generator
    )

    if len(valdata_split) > 0:
        valdata_split = SubsetWithTransform(valdata_split, transform=get_transform(args, mode='val', dtype=torch.float32))
        val_sampler = DistributedEvalSampler(
            valdata_split, num_replicas=world_size, rank=rank, shuffle=False,
        )
        valloader = torch.utils.data.DataLoader(
            valdata_split, batch_size=batch_size, pin_memory=True,
            shuffle=False, num_workers=num_workers, sampler=val_sampler,
            worker_init_fn=seedftn, generator=seed_generator
        )
    else:
        valloader = None

    if rank == 0:
        if huggingface_repo_id != '':
            logger.info(f"Loaded huggingface dataset from {huggingface_repo_id}. Split: {huggingface_split}.")
        if additional_data_path != '':
            logger.info(f"Loaded folder dataset from {additional_data_path}.")
        logger.info(f"Train/Val split: num_total: {len(dataset_object)}, num_train: {len(traindata_split)}, num_val: {len(valdata_split)} ")

    return trainloader, valloader

def get_test_dataloader(
    args,
    huggingface_repo_id='',
    huggingface_split='PublicEval',
    additional_data_path='',
    additional_data_label_format='real:0,fake:1',
    batch_size=128,
    num_workers=4,
    logger: logging.Logger = None,
    seed=None,
):
    """
    Get test dataloader for the dataset.
    Args:
        args: Namespace of argument parser
        huggingface_repo_id: huggingface repo id for the dataset
        huggingface_split: split of the dataset to use
        additional_data_path: path to the folder containing the dataset
        batch_size: size of batch
        num_workers: number of subprocesses to spawn
        seed: seed for random number generation
    """
    rank = args.rank
    world_size = args.world_size

    if logger is None:
        logger = ut.logger

    seedftn, seed_generator, seed = get_seedftn_and_generator(args, seed)

    hf_dataset=None
    if huggingface_repo_id != '':
        hf_dataset=dataset_huggingface(args, huggingface_repo_id, split=huggingface_split, mode='eval', cache_dir=args.cache_dir, dtype=torch.float32)
    
    folder_dataset=None
    if additional_data_path != '':
        folder_dataset=dataset_folder_based(args, additional_data_path, additional_data_label_format, logger=logger, dtype=torch.float32)

    # merge two datasets
    if hf_dataset is not None and folder_dataset is not None:
        dataset_object = torch.utils.data.ConcatDataset([hf_dataset, folder_dataset])
    elif hf_dataset is not None:
        dataset_object = hf_dataset
    elif folder_dataset is not None:
        dataset_object = folder_dataset
    else:
        raise ValueError("No dataset provided. Please provide a huggingface repo id or a folder path.")
    
    set_seeds_for_data(seed+rank)

    # Create dataset subset with eval transform
    dataset_object = SubsetWithTransform(dataset_object, transform=get_transform(args, mode='val', dtype=torch.float32))

    # Get dataloaders
    test_sampler = DistributedEvalSampler(
        dataset_object, num_replicas=world_size, rank=rank, shuffle=True,
    )
    testloader = torch.utils.data.DataLoader(
        dataset_object, batch_size=batch_size, pin_memory=True,
        shuffle=False, num_workers=num_workers, sampler=test_sampler,
        worker_init_fn=seedftn, generator=seed_generator
    )
    if rank == 0:
        if huggingface_repo_id != '':
            logger.info(f"Loaded huggingface dataset from {huggingface_repo_id}. Split: {huggingface_split}.")
        if additional_data_path != '':
            logger.info(f"Loaded folder dataset from {additional_data_path}.")
        logger.info(f"Test set size: {len(dataset_object)} ")
    return testloader