File size: 22,970 Bytes
37fcdfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
### Dataloader for fake/real image classification
import torch
import pandas as pd
import numpy as np
import os
import PIL.Image
import random
import custom_transforms as ctrans
import math
import utils as ut
from torchvision import transforms
#from torchvision.transforms import v2 as transforms
from torch.utils.data.distributed import DistributedSampler
from custom_sampler import DistributedEvalSampler
from functools import partial
import datasets as ds
import io
import logging
class dataset_huggingface(torch.utils.data.Dataset):
"""
Dataset for Community Forensics
"""
def __init__(
self,
args,
repo_id='OwensLab/CommunityForensics',
split='Systematic+Manual',
mode='train',
cache_dir='',
dtype=torch.float32,
):
"""
args: Namespace of argument parser
split: split of the dataset to use
mode: 'train' or 'eval'
cache_dir: directory to cache the dataset
dtype: data type
"""
super(dataset_huggingface).__init__()
self.args = args
self.repo_id = repo_id
self.split = split
self.mode = mode
self.cache_dir = cache_dir
self.dtype = dtype
self.dataset = self.get_hf_dataset()
def __getitem__(self, index):
"""
Returns the image and label for the given index.
"""
data = self.dataset[index]
image_bytes = data['image_data']
label = int(data['label'])
generator_name = data['model_name']
img = PIL.Image.open(io.BytesIO(image_bytes)).convert("RGB")
return img, label, generator_name
def get_hf_dataset(self):
"""
Returns the huggingface dataset object
"""
hf_repo_id = self.repo_id
if self.mode == 'train':
shuffle=True
shuffle_batch_size=3000
elif self.mode == 'eval':
shuffle=False
#### TEST TOKEN PART ####
#### TEST TOKEN PART ####
#### TEST TOKEN PART ####
token_df = pd.read_csv("/nfs/turbo/coe-ahowens/jespark/tokens.csv")
HF_TOKEN = token_df.loc[token_df['label'] == 'huggingface_write_token', 'token'].values[0]
#### TEST TOKEN PART ####
#### TEST TOKEN PART ####
#### TEST TOKEN PART ####
hf_dataset = ds.load_dataset(hf_repo_id, split=self.split, cache_dir=self.cache_dir, token=HF_TOKEN)
if shuffle:
hf_dataset = hf_dataset.shuffle(seed=self.args.seed, writer_batch_size=shuffle_batch_size)
return hf_dataset
def __len__(self):
"""
Returns the length of the dataset.
"""
return len(self.dataset)
class dataset_folder_based(torch.utils.data.Dataset):
"""
Dataset for sourcing images from a directory; designed to be used with the huggingface datasets library.
"""
def __init__(
self,
args,
dir,
labels="real:0,fake:1",
logger: logging.Logger = None,
dtype=torch.float32,
):
"""
args: Namespace of argument parser
dir: directory to index
labels: labels for the dataset. Default: "real:0,fake:1" -- assigns integer label 0 to images under "real" and 1 to images under "fake".
dtype: data type
The directory must be formatted as follows:
- <generator_or_dataset_name>
∟ <label -- "real" or "fake">
∟ <image_name>.{jpg,png,...}
`dir` should point to the parent directory of the `generator_or_dataset_name` folders.
"""
super(dataset_folder_based).__init__()
self.args = args
self.dir = dir
self.labels = self.parse_labels(labels)
assert len(self.labels) == 2, f"Labels must be in the format 'label1:int,label2:int'. It only supports two labels. Instead, it is: {labels}."
self.logger = logger
if self.logger is None:
self.logger = ut.logger
self.dtype = dtype
self.df = self.get_index(dir)
def __getitem__(self, index):
"""
Returns the image and label for the given index.
"""
img_path = self.df.iloc[index]['ImagePath']
label = int(self.df.iloc[index]['Label'])
generator_name = self.df.iloc[index]['GeneratorName']
img = PIL.Image.open(img_path).convert("RGB")
return img, label, generator_name
def __len__(self):
"""
Returns the length of the dataset.
"""
return len(self.df)
def parse_labels(self, labels):
"""
Parses the labels string and returns a dictionary of labels.
"""
labels_dict = {}
for label in labels.split(','):
label_name, label_value = label.split(':')
labels_dict[label_name] = int(label_value)
return labels_dict
def get_label_int(self, label):
"""
Returns the integer label for the given label name.
"""
if label in self.labels:
return self.labels[label]
else:
raise ValueError(f"Label {label} not found in labels: {self.labels}. Please check the labels.")
def get_index(self, dir):
"""
Check the `dir` for the index file. If it exists, load it. If not, index the directory and save the index file.
"""
index_path = os.path.join(dir, 'index.csv')
if os.path.exists(index_path):
df = pd.read_csv(index_path)
if self.args.rank == 0:
self.logger.info(f"Loaded index file from {index_path}")
else:
if self.args.rank == 0:
self.logger.info(f"Index file not found. Indexing the directory {dir}. This may take a while...")
df = self.index_directory(dir)
return df
def index_directory(self, dir, report_every=1000):
"""
Indexes the given directory and returns a dataframe with the image paths, labels, and generator names.
The directory must be formatted as follows:
- <generator_or_dataset_name>
∟ <label -- "real" or "fake">
∟ <image_name>.{jpg,png,...}
`dir` should point to the parent directory of the `generator_or_dataset_name` folders.
"""
df = pd.DataFrame(columns=['ImagePath', 'Label', 'GeneratorName'])
temp_dfs=[]
for root, dirs, files in os.walk(dir):
for file in files:
if file.endswith(('.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp', '.gif')):
# get the generator name and label from the directory structure
generator_name=os.path.basename(os.path.dirname(root))
label=os.path.basename(root) # should be "real" or "fake"
label_int=self.get_label_int(label)
# get the image path
image_path=os.path.join(root, file)
# append the image path, label, and generator name to the list
temp_dfs.append(pd.DataFrame([[image_path, label_int, generator_name]], columns=['ImagePath', 'Label', 'GeneratorName']))
if len(temp_dfs) % report_every == 0 and self.args.rank == 0:
print(f"\rIndexed {len(temp_dfs)} images... ", end='', flush=True)
df = pd.concat(temp_dfs, ignore_index=True)
print("") # print a new line after the progress bar
# sort the dataframe by generator name, label, and image name
df = df.sort_values(by=['GeneratorName', 'Label', 'ImagePath'])
df = df.reset_index(drop=True)
# save the dataframe
df.to_csv(os.path.join(dir, 'index.csv'), index=False)
self.logger.info(f"Indexed the directory {dir} and saved the index file to {os.path.join(dir, 'index.csv')}")
return df
def limit_real_data(self, df, num_max_images):
"""
Limits the real data to contain `num_max_images` total images by preserving the smallest datasets first.
"""
new_df=pd.DataFrame()
# get the number of images per dataset name
real_df = df[df['Label'] == 0]
fake_df = df[df['Label'] == 1]
if len(real_df) <= num_max_images:
self.logger.info(f"The size of real data: {len(real_df)} is less than or equal to the target size: {num_max_images}. No need to limit the real data. Note that the original model is trained with near 50/50 real/fake to avoid bias -- too much deviation from this may lead to unwanted detection bias.")
return df
dataset_counts = real_df['GeneratorName'].value_counts()
# sort the dataset counts in descending order
dataset_counts = dataset_counts.sort_values(ascending=True)
smallest_sum=0
smallest_idx=0
num_not_appended_datasets=len(dataset_counts)
while True:
perModelLen = dataset_counts.iloc[smallest_idx]
if (perModelLen * num_not_appended_datasets + smallest_sum) >= num_max_images: # reached data target
perModelLen = math.ceil((num_max_images - smallest_sum) / num_not_appended_datasets) # number of images to sample from datasets not yet fully appended
break
elif smallest_idx == len(dataset_counts)-1:
break # ran out of datasets; this is when size of all real data is less than num_max_images
else: # continuously grow perModelLen with the next smallest dataset
smallest_sum += dataset_counts.iloc[smallest_idx] # fully append the smallest dataset
smallest_idx+=1
num_not_appended_datasets-=1
# sample the datasets
for dataset_name in dataset_counts.index[smallest_idx:]:
dataset_df = real_df[real_df['GeneratorName'] == dataset_name]
if len(dataset_df) > perModelLen:
dataset_df = dataset_df.sample(n=perModelLen, random_state=self.args.seed)
new_df = pd.concat([new_df, dataset_df], ignore_index=True)
# append the remaining datasets
for dataset_name in dataset_counts.index[:smallest_idx]:
dataset_df = real_df[real_df['GeneratorName'] == dataset_name]
new_df = pd.concat([new_df, dataset_df], ignore_index=True)
# report the proportions per dataset
if self.args.rank == 0:
pd.options.display.float_format = '{:.2f} %'.format
self.logger.info(f"Max images per dataset limited to {perModelLen}. Affected datasets: {dataset_counts.index[smallest_idx:]}")
# Update the dataset counts for reporting proportions
dataset_counts = new_df['GeneratorName'].value_counts()
dataset_counts = dataset_counts / dataset_counts.sum() * 100 # composition percentage
self.logger.info(f"Dataset composition: \n{dataset_counts}")
# append the fake data
new_df = pd.concat([new_df, fake_df], ignore_index=True)
return new_df
def determine_resize_crop_sizes(args):
"""
Determine resize and crop sizes based on input size.
"""
if args.input_size==224:
resize_size=256
crop_size=224
elif args.input_size==384:
resize_size=440
crop_size=384
return resize_size, crop_size
def get_transform(args, mode="train", dtype=torch.float32):
norm_mean = [0.485, 0.456, 0.406] #imagenet norm
norm_std = [0.229, 0.224, 0.225]
resize_size, crop_size = determine_resize_crop_sizes(args)
augment_list = []
if mode=="train":
augment_list.append(transforms.Resize(resize_size))
# RandomStateAugmentation
if args.rsa_ops != '':
# parse rsa_ops and their num_ops
# Default "rsa_ops" is "JPEGinMemory,RandomResizeWithRandomIntpl,RandomCrop,RandomHorizontalFlip,RandomVerticalFlip,RRCWithRandomIntpl,RandomRotation,RandomTranslate,RandomShear,RandomPadding,RandomCutout"
augment_list.append(ctrans.RandomStateAugmentation(resize_size=resize_size, crop_size=crop_size, auglist=args.rsa_ops, min_augs=args.rsa_min_num_ops, max_augs=args.rsa_max_num_ops))
augment_list.append(transforms.RandomCrop(crop_size))
# basic augmentations
augment_list.extend([
ctrans.ToTensor_range(val_min=0, val_max=1),
transforms.Normalize(mean=norm_mean, std=norm_std),
transforms.ConvertImageDtype(dtype)
])
elif mode=="val" or mode=="test":
augment_list.append(transforms.Resize(resize_size))
augment_list.extend([
transforms.CenterCrop(crop_size),
ctrans.ToTensor_range(val_min=0, val_max=1),
transforms.Normalize(mean=norm_mean, std=norm_std),
transforms.ConvertImageDtype(dtype),
])
transform = transforms.Compose(augment_list)
return transform
class SubsetWithTransform(torch.utils.data.Dataset):
"""
Custom subset class which allows to customize transform for each subsets got from random_split()
"""
def __init__(self, subset, transform=None):
self.subset = subset
self.subset_len = len(subset)
self.transform = transform
def __getitem__(self, index):
img, lab, generator_name = self.subset[index]
if self.transform:
img = self.transform(img)
return img, lab, generator_name
def __len__(self):
return self.subset_len
def set_seeds_for_data(seed=11997733):
"""
Set seeds for Python, numpy, and pytorch. Used to split the dataset consistantly across DDP instances.
"""
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
def set_seeds_for_worker(seed=11997733, id=0):
"""
Set seeds for python, and numpy. Default seed=11997733.
PyTorch seeding is handled by torch.Generator passed into the DataLoader
"""
seed = seed % (2**31)
random.seed(seed+id)
np.random.seed(seed+id)
def worker_seed_reporter(id=None):
"""
Debug: reports worker seeds
"""
workerseed = torch.utils.data.get_worker_info().seed
numwkr = torch.utils.data.get_worker_info().num_workers
baseseed = torch.initial_seed()
print(f"Worker id: {id+1}/{numwkr}, worker seed: {workerseed}, baseseed: {baseseed}, workerseed % (2**31): {workerseed % (2**31)}")
def set_seeds_and_report(report=True, id=0):
"""
Debug: set seeds and report
"""
workerseed = torch.utils.data.get_worker_info().seed
set_seeds_for_worker(workerseed, id)
if report:
worker_seed_reporter(id)
def get_seedftn_and_generator(args, seed=None):
"""
Get the seed function and generator for the dataloader.
Args:
args: Namespace of argument parser
seed: seed for random number generation
"""
rank = args.rank
if seed is not None:
seedftn = partial(set_seeds_and_report, False)
seed_generator = torch.Generator(device='cpu')
seed_generator.manual_seed(seed+rank)
else:
seedftn = None
seed_generator = None
seed = random.randint(0, 1000000000)
return seedftn, seed_generator, seed
def get_train_dataloaders(
args,
huggingface_repo_id='',
huggingface_split='Systematic+Manual',
additional_data_path='',
additional_data_label_format='real:0,fake:1',
batch_size=128,
num_workers=4,
val_frac=0.01,
logger: logging.Logger = None,
seed=None,
):
"""
Get train and validation dataloaders for the dataset.
Args:
args: Namespace of argument parser
huggingface_repo_id: huggingface repo id for the dataset
huggingface_split: split of the dataset to use
additional_data_path: path to the folder containing the dataset
batch_size: size of batch
num_workers: number of subprocesses to spawn
val_frac: fraction of data to use for validation (default: 0.01)
seed: seed for random number generation
"""
rank = args.rank
world_size = args.world_size
seedftn, seed_generator, seed = get_seedftn_and_generator(args, seed)
if logger is None:
logger = ut.logger
hf_dataset=None
if huggingface_repo_id != '':
hf_dataset=dataset_huggingface(args, huggingface_repo_id, split=huggingface_split, mode='train', cache_dir=args.cache_dir, dtype=torch.float32)
folder_dataset=None
if additional_data_path != '':
folder_dataset=dataset_folder_based(args, additional_data_path, additional_data_label_format, logger=logger, dtype=torch.float32)
num_fake_images = len(folder_dataset.df[folder_dataset.df['Label'] == 1])
if hf_dataset is not None and not args.dont_limit_real_data_to_fake: # limit real data to the length of fake data
num_hf_fake_images = len(hf_dataset.dataset.filter(lambda x: x['label'] == 1, num_proc=num_workers))
num_hf_real_images = len(hf_dataset.dataset) - num_hf_fake_images
num_fake_images = num_fake_images + num_hf_fake_images
#num_real_images = num_hf_real_images + len(folder_dataset.df[folder_dataset.df['Label'] == 0])
folder_based_real_limit = num_fake_images - num_hf_real_images
if folder_based_real_limit < 0:
folder_based_real_limit = 0
else:
if rank == 0:
logger.info(f"Limiting folder-based real data to {folder_based_real_limit} images to match the number of fake images.")
folder_dataset.df = folder_dataset.limit_real_data(folder_dataset.df, folder_based_real_limit)
# merge two datasets
if hf_dataset is not None and folder_dataset is not None:
dataset_object = torch.utils.data.ConcatDataset([hf_dataset, folder_dataset])
elif hf_dataset is not None:
dataset_object = hf_dataset
elif folder_dataset is not None:
dataset_object = folder_dataset
else:
raise ValueError("No dataset provided. Please provide a huggingface repo id or a folder path.")
set_seeds_for_data(seed) # Set same seeds for dataset split
# Split the dataset into train and validation sets
train_frac = 1 - val_frac
if val_frac > 0:
traindata_split, valdata_split = torch.utils.data.random_split(dataset_object, (train_frac, val_frac))
else:
traindata_split = dataset_object
valdata_split = []
set_seeds_for_data(seed+rank) # after dataset is split, use different seeds for augmentations and shuffling.
# Get dataloaders
traindata_split = SubsetWithTransform(traindata_split, transform=get_transform(args, mode='train', dtype=torch.float32))
train_sampler = DistributedSampler(
traindata_split, num_replicas=world_size, rank=rank, shuffle=True, drop_last=False,
)
trainloader = torch.utils.data.DataLoader(
traindata_split, batch_size=batch_size, pin_memory=True,
shuffle=False, num_workers=num_workers, sampler=train_sampler,
worker_init_fn=seedftn, generator=seed_generator
)
if len(valdata_split) > 0:
valdata_split = SubsetWithTransform(valdata_split, transform=get_transform(args, mode='val', dtype=torch.float32))
val_sampler = DistributedEvalSampler(
valdata_split, num_replicas=world_size, rank=rank, shuffle=False,
)
valloader = torch.utils.data.DataLoader(
valdata_split, batch_size=batch_size, pin_memory=True,
shuffle=False, num_workers=num_workers, sampler=val_sampler,
worker_init_fn=seedftn, generator=seed_generator
)
else:
valloader = None
if rank == 0:
if huggingface_repo_id != '':
logger.info(f"Loaded huggingface dataset from {huggingface_repo_id}. Split: {huggingface_split}.")
if additional_data_path != '':
logger.info(f"Loaded folder dataset from {additional_data_path}.")
logger.info(f"Train/Val split: num_total: {len(dataset_object)}, num_train: {len(traindata_split)}, num_val: {len(valdata_split)} ")
return trainloader, valloader
def get_test_dataloader(
args,
huggingface_repo_id='',
huggingface_split='PublicEval',
additional_data_path='',
additional_data_label_format='real:0,fake:1',
batch_size=128,
num_workers=4,
logger: logging.Logger = None,
seed=None,
):
"""
Get test dataloader for the dataset.
Args:
args: Namespace of argument parser
huggingface_repo_id: huggingface repo id for the dataset
huggingface_split: split of the dataset to use
additional_data_path: path to the folder containing the dataset
batch_size: size of batch
num_workers: number of subprocesses to spawn
seed: seed for random number generation
"""
rank = args.rank
world_size = args.world_size
if logger is None:
logger = ut.logger
seedftn, seed_generator, seed = get_seedftn_and_generator(args, seed)
hf_dataset=None
if huggingface_repo_id != '':
hf_dataset=dataset_huggingface(args, huggingface_repo_id, split=huggingface_split, mode='eval', cache_dir=args.cache_dir, dtype=torch.float32)
folder_dataset=None
if additional_data_path != '':
folder_dataset=dataset_folder_based(args, additional_data_path, additional_data_label_format, logger=logger, dtype=torch.float32)
# merge two datasets
if hf_dataset is not None and folder_dataset is not None:
dataset_object = torch.utils.data.ConcatDataset([hf_dataset, folder_dataset])
elif hf_dataset is not None:
dataset_object = hf_dataset
elif folder_dataset is not None:
dataset_object = folder_dataset
else:
raise ValueError("No dataset provided. Please provide a huggingface repo id or a folder path.")
set_seeds_for_data(seed+rank)
# Create dataset subset with eval transform
dataset_object = SubsetWithTransform(dataset_object, transform=get_transform(args, mode='val', dtype=torch.float32))
# Get dataloaders
test_sampler = DistributedEvalSampler(
dataset_object, num_replicas=world_size, rank=rank, shuffle=True,
)
testloader = torch.utils.data.DataLoader(
dataset_object, batch_size=batch_size, pin_memory=True,
shuffle=False, num_workers=num_workers, sampler=test_sampler,
worker_init_fn=seedftn, generator=seed_generator
)
if rank == 0:
if huggingface_repo_id != '':
logger.info(f"Loaded huggingface dataset from {huggingface_repo_id}. Split: {huggingface_split}.")
if additional_data_path != '':
logger.info(f"Loaded folder dataset from {additional_data_path}.")
logger.info(f"Test set size: {len(dataset_object)} ")
return testloader |