|
import dataloader as dl |
|
import torch |
|
import argparse |
|
import transformers |
|
import PIL.Image as Image |
|
from typing import Union, List |
|
|
|
from transformers.image_processing_utils import BaseImageProcessor |
|
from transformers.utils import PushToHubMixin |
|
|
|
class CommForImageProcessor(BaseImageProcessor, PushToHubMixin): |
|
""" |
|
Image processor for Community Forensics VIT model. Processes PIL images and returns PyTorch tensors. |
|
""" |
|
image_processor_type = "commfor_image_processor" |
|
model_input_names = ["pixel_values"] |
|
|
|
def __init__(self, size=384, **kwargs): |
|
super().__init__(**kwargs) |
|
self.size = size |
|
assert self.size in [224, 384], f"Unsupported size: {self.size}. Supported sizes are 224 and 384." |
|
|
|
def preprocess( |
|
self, |
|
images: Union[Image.Image, List[Image.Image]], |
|
mode: str = "test", |
|
**kwargs |
|
): |
|
""" |
|
Preprocess the input images to PyTorch tensors. |
|
""" |
|
assert mode in ["test", "train"], f"Unsupported mode: {mode}. Supported modes are 'test' and 'train'." |
|
assert isinstance(images, (Image.Image, list)), "Input must be a PIL Image or a list of PIL Images." |
|
if isinstance(images, Image.Image): |
|
images = [images] |
|
|
|
args = argparse.Namespace() |
|
args.input_size = self.size |
|
args.rsa_ops="JPEGinMemory,RandomResizeWithRandomIntpl,RandomCrop,RandomHorizontalFlip,RandomVerticalFlip,RRCWithRandomIntpl,RandomRotation,RandomTranslate,RandomShear,RandomPadding,RandomCutout" |
|
args.rsa_min_num_ops='0' |
|
args.rsa_max_num_ops='2' |
|
|
|
transform = dl.get_transform(args, mode=mode) |
|
|
|
processed_images = [transform(image) for image in images] |
|
if len(processed_images) == 1: |
|
return {"pixel_values": processed_images[0]} |
|
else: |
|
return {"pixel_values": torch.stack(processed_images)} |
|
|
|
|
|
|
|
|
|
|