import math import torch import torch.nn as nn import torch.nn.functional as F class PhaseFormerTransformerLayer(nn.Module): """ Transformer layer with phase-based temporal gating applied to attention and feed-forward residual paths. Args: d_model (int): Input/output dimension. nhead (int): Number of attention heads. dim_feedforward (int): FFN hidden layer size. dropout (float): Dropout probability. decay_rate (float): Decay coefficient lambda. """ def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, decay_rate=0.1): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.decay_rate = decay_rate self.phase_proj = nn.Linear(d_model, d_model) def forward(self, src, t: float): D_t = math.exp(-self.decay_rate * t) phase = self.phase_proj(src) g = D_t * torch.sin(phase) attn_out, _ = self.self_attn(src, src, src) src2 = self.norm1(src + g * attn_out) ff = self.linear2(self.dropout(F.relu(self.linear1(src2)))) return self.norm2(src2 + g * ff)