File size: 2,973 Bytes
f1db437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: hq_fer2013notest
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7052268506235075
    - name: Precision
      type: precision
      value: 0.7048074435355876
    - name: Recall
      type: recall
      value: 0.7052268506235075
    - name: F1
      type: f1
      value: 0.7036260157126459
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hq_fer2013notest

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8294
- Accuracy: 0.7052
- Precision: 0.7048
- Recall: 0.7052
- F1: 0.7036

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 17
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.2982        | 1.0   | 353  | 1.2708          | 0.5635   | 0.5107    | 0.5635 | 0.5168 |
| 1.0218        | 2.0   | 706  | 1.0159          | 0.6411   | 0.6397    | 0.6411 | 0.6301 |
| 0.9437        | 3.0   | 1059 | 0.9452          | 0.6631   | 0.6698    | 0.6631 | 0.6556 |
| 0.8282        | 4.0   | 1412 | 0.8873          | 0.6829   | 0.6798    | 0.6829 | 0.6743 |
| 0.7717        | 5.0   | 1765 | 0.8612          | 0.6884   | 0.6888    | 0.6884 | 0.6835 |
| 0.7678        | 6.0   | 2118 | 0.8473          | 0.6985   | 0.6989    | 0.6985 | 0.6966 |
| 0.7096        | 7.0   | 2471 | 0.8363          | 0.7018   | 0.7001    | 0.7018 | 0.6989 |
| 0.6803        | 8.0   | 2824 | 0.8333          | 0.7036   | 0.7036    | 0.7036 | 0.7019 |
| 0.6521        | 9.0   | 3177 | 0.8309          | 0.7050   | 0.7039    | 0.7050 | 0.7028 |
| 0.6671        | 10.0  | 3530 | 0.8294          | 0.7052   | 0.7048    | 0.7052 | 0.7036 |


### Framework versions

- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2