File size: 7,699 Bytes
b9695a3
 
 
 
dbe47c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c719315
aed2687
99b5463
43aa402
b9695a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e016f98
b9695a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e016f98
 
 
b9695a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import sys
from subprocess import run


#run("pip install --upgrade pip", shell=True, check=True)
#run("pip uninstall torch -y", shell=True, check=True)
#run("pip uninstall torch -y", shell=True, check=True)
#run("pip install torch", shell=True, check=True)

#run("pip install unsloth unsloth_zoo --no-cache-dir --upgrade", shell=True, check=True)
#run("pip uninstall unsloth unsloth_zoo torch -y", shell=True, check=True)

run("pip install unsloth", shell=True, check=True)
run("pip uninstall unsloth -y && pip install --upgrade --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git", shell=True, check=True)
run("pip install --no-deps bitsandbytes accelerate xformers==0.0.29 peft trl triton", shell=True, check=True)
run("pip install --no-deps cut_cross_entropy unsloth_zoo", shell=True, check=True)
run("pip install sentencepiece protobuf datasets huggingface_hub hf_transfer", shell=True, check=True)
run("pip install --no-deps unsloth", shell=True, check=True)




#run("pip install --extra-index-url https://download.pytorch.org/whl/cu124", shell=True, check=True)
#run("pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu124", shell=True, check=True)
#run("pip uninstall unsloth -y && pip install --upgrade --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git", shell=True, check=True)

import torch
from unsloth import FastVisionModel
from PIL import Image
import re
import json
from fastapi import FastAPI, HTTPException, Query, Request, File, UploadFile
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import shutil
import os
import pymupdf
from pypdf import PdfReader
from enum import Enum
from pydantic import BaseModel, Field
from typing import Optional, Union, List, Dict, Any
if not os.path.exists('./static'): os.mkdir('./static')
import logging
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig


logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id = "Portx/do_extractor_20251403_multi_task_model"

class PromptSet:
  main_order_information_prompt = """
  You are an expert in analyzing and extracting information from freight, shipment, or delivery orders. Please carefully read the provided order file and extract the following 10 key pieces of information. Ensure that the key names are exactly as listed below. Do not create any additional key names other than these. If any information is missing or unavailable, output '-'.
  #Key names and their descriptions:
    1. container_number: The container number/no of the shipment (e.g., TRKU2038448, MSDU8549321). This should be an 11-character container number, with no additional format. If not available, output '-'.
    2. bill_of_lading: The Bill of Lading number, which could include formats such as B/L No., AWS No., BL No., or ocean Bill of Lading (e.g., AXVJMER000008166, TRKU-10152009, HLCU ALY241000275). If not available, output '-'.
    3. importing_carrier: The importing or ocean carrier, which may include SCAC codes, carrier's local agents, or sea line codes. If not available, output '-'.
    4. origin_address: The address for picking up the container, such as the origin address, pickup location, terminal, or port of discharge. Exclude loading location information. (e.g., "PORT LIBERTY NY CONTAINER TERMINAL 300 WESTERN AVE"). If not available, output '-'.
    5. destination_address: The address where the container is to be delivered, typically a company name or a specific delivery location (e.g., "AERO RECEIVING EAST, 2 BRICK PLANT ROAD, SOUTH RIVER, NJ"). If not available, output '-'.
    6. container_weight: The weight of the container (in numeric format, e.g., 58,201.44). If there are multiple weights, output the highest value. If not available, output '-'.
    7. container_weight_unit: The unit of measurement for the container's weight (e.g., LBS, KGS, KG, LB). If not available, output '-'.
    8. container_type: The type/size of the container (e.g., 40HC, 20GP FCL). If not available, output '-'.
    9. po_number: The purchase order number or customer’s PO (e.g., PO Number, customer’s PO, consol). If not available, output '-'.
    10. reference_number: The reference number, file number, or any internal reference (e.g., reference number, our ref no.). If not available, output '-'.

  #Output:
    {container_number: ...,
    bill_of_lading: ..,
    importing_carrier: ...,
    origin_address: ...,
    destination_address: ...,
    container_weight: ...,
    container_weight_unit: ...,
    container_type: ...,
    po_number: ...,
    reference_number: ...
    }

  Guidelines:
    - Very important: do not make up anything. If the information of a required field is not available, output '-' for it.
    - Output in JSON format. The JSON should contain the above 10 keys.
  """
  order_list_prompt = "How much container are there? Give to me all container numbers only in a json array?"
  multiple_container_information_prompt = "Give to me container weight, container weight unit,the container size (with type) of {query} in the same line with container_number:{query}.You must response only in a JSON format. Example output is must be 'container_number': 'OOCU6979480', 'container_type': '40HC or DV', 'weight': '46,737.52', 'weight_unit': 'LB'"



class RegexSet:
  def get_all_container_array(input_response):
    try:
      pattern = r'\[([^\]]+)\]'
      matches = re.findall(pattern, input_response)
      final_response = matches[0].split(', ')
      total_container_number = len(final_response)
      return final_response, total_container_number
    except:
      return '[]', 0


  def convert_one_order_information(input_response):
    try:
      pattern = r"'([^']+)':\s'([^']+)'"
      matches = re.findall(pattern, input_response)
      final_response = {match[0]: match[1] for match in matches}
      return final_response
    except:
      return '-'

class Utils:
    def base64_to_jpg(base64_string):
        image_data = base64.b64decode(base64_string)
        with open("./do_img.jpg", 'wb') as f:
            f.write(image_data)

class EndpointHandler:
    def __init__(self, path=""):
        self.model, self.tokenizer = FastVisionModel.from_pretrained(model_id,  token=os.getenv('HF_TOKEN'),load_in_4bit=True)
        FastVisionModel.for_inference(self.model)


    def __call__(self, data: Dict[str, bytes]) -> Dict[str, List[Any]]:
  
        prompt, base64_image = data["inputs"]["text"], data["inputs"]["image"]

        if prompt == "0":
            final_prompt = PromptSet.main_order_information_prompt
        elif prompt == "1":
            final_prompt = PromptSet.order_list_prompt
        else:
            final_prompt = prompt

        converted_image = Utils.base64_to_jpg(base64_image)
        image = Image.open(converted_image)

        messages = [
        {"role": "user", "content": [
            {"type": "image"},
            {"type": "text", "text": final_prompt}
        ]}]
        
        input_text = self.tokenizer.apply_chat_template(messages, add_generation_prompt = False)
        inputs = self.tokenizer(image, input_text, add_special_tokens = False, return_tensors = "pt",).to("cuda")
        output = self.model.generate(**inputs, max_new_tokens = 512, use_cache = True, temperature = 1.5, min_p = 0.9)
        #final_output = self.tokenizer.decode(output[0][len(inputs['input_ids'][0]):], skip_special_tokens=True)
        #response = RegexSet.convert_one_order_information(input_response=final_output)

        return {"predictions": output}